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turbulence regime

O. A. Druzhinin,a,b* Y. I. Troitskayaa,b,c and S. S. Zilitinkevichb,d,e,f,g

aInstitute of Applied Physics, Russian Academy of Sciences, Ul’anov str. 46, Nizhny Novgorod, 603950 Russia
bRadiophysics Department, University of Nizhny Novgorod, Russia

cInstitute of Physics of the Atmosphere, Russian Academy of Sciences, Moscow, Russia
dPhysics Department, Moscow State University, Moscow, Russia

eInstitute of Geography, Russian Academy of Sciences, Moscow, Russia
fFinnish Meteorological Institute, Helsinki, Finland

gDivision of Atmospheric Sciences, University of Helsinki, Finland

*Correspondence to: O. A. Druzhinin. Institute of Applied Physics, Russian Academy of Sciences, Ul’anova str. 46, Nizhny
Novgorod, 603950 Russia. E-mail: druzhinin@hydro.appl.sci-nnov.ru

Stably stratified turbulent boundary-layer flows over both a waved water surface and a flat
smooth surface are investigated through direct numerical simulation (DNS) for the bulk
Reynolds numbers, Re, from 15 000 to 80 000. DNS expose the following basic properties of
the flow. A statistically stationary turbulent regime is sustained if the turbulent Reynolds
number, ReL, based on the Obukhov length-scale and friction velocity, is larger than 102.
At ReL < 102, turbulence over a flat surface degenerates completely, but over a waved
surface it survives in the form of residual fluctuations, which are weaker for smaller wave
slopes. In the stationary turbulent regime, at ReL > 102, vertical profiles of the mean-flow
velocity and temperature have a log-linear shape, as predicted by the Monin-Obukhov
similarity theory, with the same empirical dimensionless constants as in laboratory and
field experiments. The velocity and temperature roughness lengths, vertical turbulent
fluxes of momentum and heat, and root mean square turbulent velocity and temperature
fluctuations increase with increasing slope of the surface waves. At the same time, vertical
profiles of the mean velocity and temperature keep the self-similar shape predicted by the
Monin–Obukhov theory, irrespective of the wave slope.
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1. Introduction

Detailed knowledge of the physical mechanisms of interaction
between airflow and surface waves is of primary importance for
realistic representation of vertical turbulent fluxes of momentum,
energy and matter, linking the atmosphere and hydrosphere in
climate and weather prediction model systems. In state-of-the-art
models, these fluxes are calculated via bulk formulae to a large
extent based on empirical coefficients. The latter are obtained
from field and laboratory experiments and exhibit essential
variability, whose nature in relation to wind-wave interaction
processes is not yet fully understood (Fairall et al., 2003). Of
special interest is the influence of stratification in the atmospheric
surface layer on wind-wave interactions and the air-sea fluxes.

Measurements above a waved water surface require special
efforts. Especially complicated are measurements in wave troughs
and in a thin layer above the water surface covering the viscous
sublayer and the adjacent buffer layer. The typical height of
the region to be examined is of order of millimetres, which is

usually much smaller than the surface wave amplitude. Here,
detailed properties of airflow cannot be detected using contact
measurement techniques, such as wave-following probes (Hsu
et al., 1981; Hsu and Hsu, 1983; Donelan et al., 2005). However,
methods based on the particle image velocimetry (PIV) technique
(Adrian, 1991) allow for measuring wind velocity at heights over
the surface of order 1 mm. This is sufficient for investigating
both viscous and buffer layers at not too strong winds, with
friction velocities less than 10 cm s−1 (Reul, 1999; Veron et al.,
2007; Troitskaya et al., 2011). Precise measurements of the air
temperature in the viscous sublayer and buffer layer above waves
are strongly needed but still remain difficult.

Numerical experiments make a complementary tool to
laboratory and field measurements. Earlier numerical modelling
of interaction between turbulent airflow and surface waves was
based on the Reynolds (ensemble) Averaged, Navier-Stokes
(RANS) equations for stationary, two-dimensional flow (Gent
and Taylor, 1976; Al-Zanaidi and Hui, 1984; Chalikov, 1986).
These RANS equations employed the semi-empirical concept
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of turbulent viscosity to express unknown Reynolds (turbulent)
stresses through known mean-field gradients. This approach is
computationally cheap and provides a useful picture of the mean
velocity, pressure and turbulent fluxes in the airflow. However,
it is not immediately applicable to modelling airflow in the
viscous sublayer and buffer region, which requires inclusion of
the molecular transports (L’vov et al., 2006).

More advanced (but more computationally expensive) is Large-
Eddy Simulation (LES) based on numerical integration of three-
dimensional, non-stationary, filtered Navier-Stokes equations
and capable of resolving 3D large-scale turbulent structure of the
flow (cf. Sullivan et al., 2008, 2014). However, LESs do not resolve
properties of the flow close to the water surface (or solid wall).
Typically the first LES grid node in the vertical direction is located
within the logarithmic region of the boundary layer. As a remedy,
one can perform wall-resolved LES (cf. Pope, 2000) and resolve
the viscous sublayer; however, numerical costs strongly increase.

Direct Numerical Simulation (DNS) is free of this drawback
and resolves the entire turbulence spectrum from large eddies
down to the dissipation length-scale. Sullivan et al. (2000)
were the first who employed DNS to investigate non-stratified
turbulent wind flow over surface waves for bulk Reynolds number
Re = (U0λ/ν) = 8800 (where U0 is the bulk wind flow velocity, λ
the surface wave length, and ν the air molecular viscosity) and
wave slope ka = 0.1 (where k is the wavenumber and a the wave
amplitude). In their follow-up study, Sullivan and McWilliams
(2002) performed DNS of the airflow above the surface waves
in the presence of both stable and unstable stratification, with
the same wave slope (ka = 0.1) and somewhat lower Reynolds
number (Re = 8000). Later Yang and Shen (2010) performed DNS
study of turbulent, non-stratified flow over waves with maximum
slope ka = 0.25 and Re ≈ 10 000. Although DNS provides a full
description of the turbulent flow at all physically significant scales,
so far it has not been able to achieve Reynolds numbers of order 105

typical of the wind-wave interaction in laboratory experiments.
Druzhinin et al. (2012) have performed DNS of non-stratified
turbulent flow over waved water surface for Re = 15 000 – almost
twice that of the Re = 8800 approached by Sullivan et al. (2000)
and 50% larger than Re = 9943 approached by Yang and Shen
(2010), with maximum wave slope ka = 0.2 – close to 0.25
approached by Yang and Shen (2010).

In the present study, we consider the stably stratified airflows
over a waved water surface with wave slopes up to ka = 0.2 and
bulk Reynolds numbers from Re = 15 000 up to Re = 80 000 and
for different bulk Richardson numbers, Ri (based on the mean
wind velocity and temperature difference, and the wave length
λ). To the best of our knowledge, this is the first DNS study of
the stably stratified boundary-layer flow with such high Reynolds
numbers (up to Re ∼ 105) over waved water surface. The results
obtained in DNS studies of the stably stratified boundary layers
over a flat surface (e.g. Coleman et al., 1992; Nieuwstadt, 2005;
Garcı́a-Villalba and del Álamo, 2011; Flores and Riley, 2011;
Ansorge and Mellado, 2014; Deusebio et al., 2014) show that
increasing stratification leads to transition from a stationary
turbulent regime, in weak stratification, to a laminar flow regime
in sufficiently strong stratification. We focus on the stationary
turbulent regime observed for a sufficiently small Ri (cf. Sullivan
and McWilliams, 2002). Degeneration of turbulence at larger Ri
and the problem of transition between turbulent and laminar
regimes is considered in our follow-up study (Druzhinin et al.,
2015, Part 2).

2. Basic equations and numerical method

We perform direct numerical simulation of turbulent stably strat-
ified Couette flow above waved water surface. The schematic of
the numerical experiment is similar to the one used by Sulli-
van and McWilliams (2002) (Figure 1). A Cartesian framework
is considered where x-axis is oriented along the mean wind,
z-axis is directed vertically upwards and y-axis is orthogonal

to the mean flow and parallel to the wave front. We prescribe
two-dimensional, x-periodic water wave with amplitude a, wave-
length λ and phase velocity c. The maximum wave slope
considered in our DNS is ka = 2πa/λ = 0.2. The rectangular
computational domain has the sizes Lx = 6λ, Ly = 4λ and Lz = λ

in the x-, y-, and z-directions, respectively, and the airflow is
assumed to be periodical in the x- and y-directions. DNS is per-
formed in a reference frame moving with the wave phase velocity,
c, so that the horizontal coordinate in the moving framework is
x = x′ − ct, where x′ is the coordinate in the laboratory reference
frame. Then the lower boundary, representing the wave surface,
is stationary in the moving reference frame. As in all previous
DNS studies mentioned above, in the present DNS study we do
not consider capillary ripples riding on the wave generally found
in a realistic sea situation. The presence of ripples increases the
effective wavy-surface slope and may cause local flow separation
which significantly complicates numerical solution. The no-slip
boundary condition is prescribed at the lower boundary, so that
the wind velocity at the boundary coincides with the velocity in the
water wave. The no-slip boundary condition is also prescribed at
the upper horizontal plane moving in x-direction with bulk veloc-
ity U0. This condition provides the external source of momentum
due to the viscous shear stress, which compensates the viscous
dissipation in the boundary layer and makes the flow statistically
stationary. The stable density stratification is specified by pre-
scribing the potential temperature at the wavy surface as � = �0

and the top boundary plane as �= �0 + ��, where �� > 0.
Numerical algorithm is based on the integration of full,

3D Navier-Stokes equations for incompressible fluid under the
Boussinesq approximation (Monin and Yaglom, 1971):
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where xi = x, y, z, Ui(i = x, y, z) are the velocity components, P is
pressure and �ref is the reference temperature, ν is the kinematic
air viscosity and g the gravity acceleration. The Prandtl number,
Pr = ν/μ (where μ is thermal diffusivity).

The integration is performed in curvilinear coordinates (ξ , y, η)
which are related to the Cartesian coordinates (x, y, z) by the
mapping:

x = ξ − a exp(−kη) sin kξ , (4)

z = η + a exp(−kη) cos kξ . (5)

This mapping transforms the lower waved boundary zb(x) =
a cos kξ(x) into a plane boundary at η = 0(Druzhinin et al., 2012).
It is easy to show that for a small, finite wave amplitude a, the
shape of the boundary, zb(x), up to the terms of order O(k2a3),
coincides with asymptotic solution for the Stokes wave (Gent and
Taylor, 1976):

zb(x) = a cos kx + 1

2
a2k(cos 2kx − 1). (6)

The governing equations (1)–(3) are rewritten in dimension-
less variables normalized by the wavelength λ, bulk velocity
U0 and temperature difference ��, and pressure normal-
ized by ρU2

0 (where ρ is the air density). The integration is
performed using dimensionless curvilinear coordinates, ξ1 =
ξ/λ, ξ2 = y/λ, ξ3 = η/λ, and Cartesian velocity components
U1 = Ux/U0, U2 = Uy/U0, and U3 = Uz/U0. We also introduce
a linear reference temperature profile, �ref(ξ 2) = ��η/λ, and
perform the integration with respect to the dimensionless devia-
tion of the temperature, T̃ = (� − �ref )/��. The dimensionless
governing equations solved in DNS are given in the Appendix.
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Figure 1. Schematic of the numerical experiment.

Table 1. Parameters of DNS runs.

Re Ri �ξ+
1 �ξw+

3 Reτ ReL ka c/U0 State

15 000 0.04 5.21 0.26 315 304 0 0 Turb.
15 000 0.06 4.8 0.24 280 230 0 0 Turb.
15 000 0.04 6.1 0.31 360 310 0.2 0.2 Turb.
15 000 0.04 5.6 0.28 330 290 0.1 0.05 Turb.
15 000 0.04 6.3 0.31 375 350 0.2 0.05 Turb.
30 000 0.075 6.9 0.35 410 160 0 0 Turb.
40 000 0.09 7.2 0.36 430 120 0 0 Turb.
40 000 0.1 8.3 0.42 520 160 0.2 0.05 Turb.
80 000 0.11 10.4 0.56 650 105 0 0 Turb.
15 000 0.08 – – – – 0.2 0.05 Pre-turb.
40 000 0.2 – – – – 0.2 0.05 Pre-turb.
80 000 0.2 – – – – 0.15 0.05 Pre-turb.

The governing parameters in DNS are the bulk Reynolds and
Richardson numbers defined as:

Re = U0λ

ν
, (7)

Ri = g
��

�0

λ

U2
0

. (8)

The Prandtl number, Pr = ν/μ (where μ is thermal diffusivity),
is prescribed as Pr = 0.7.

The governing equations are discretized in a rectangular
domain with sizes 0 < ξ 1 < 6, 0 < ξ 2 < 4, and 0 < ξ 3 < 1 by
employing a finite-difference method of second-order accuracy
on a uniform staggered grid consisting of 360 × 240 × 180 nodes.
An additional mapping is employed to compress the grid in the
vertical direction near the boundaries in order to resolve the
viscous boundary layer (cf. Appendix). Parameters of DNS runs
are listed in the Table 1. Note that the relatively high Reynolds
number in the present study required sufficiently high resolution
of the fine scales where dissipation of turbulent kinetic energy
occurs in DNS. In the considered case of boundary-layer flow,
the viscous scale is ν/u*, where u* is the friction velocity and
ν the kinematic viscosity. This scale generally varies in DNS
for different bulk Reynolds numbers and Richardson numbers.
Our DNS employ the grid with mesh sizes �ξ 1 = 1/60 in the
streamwise and spanwise directions, ξ 1 and ξ 2, whereas in the
vertical direction ξ 3 the mesh size increases from �ξw

3 ≈ 0.0008
near the walls to �ξ c

3 ≈ 0.009 in the centre of computational
domain. When normalized by the wall scale, the mesh sizes
for different Re and Ri vary as �ξ+

1 ≈ 2 ÷ 10 in the horizontal
plane and from �ξw+

3 ≈ 0.2 ÷ 0.6 near the boundaries to about
�ξ c+

3 ≈ 2 ÷ 5 in the centre of the domain. These grid spacings
are generally regarded as sufficient to resolve fine-scale turbulent
motions in DNS of turbulent boundary-layer flows (as discussed
by Moin and Manesh, 1998). In the DNS runs listed in the three
bottom rows of Table 1, the flow relaminarizes and turbulent
fluxes of momentum and heat drastically reduce in the bulk of

the computational domain. In this regime, finite velocity and
temperature fluctuations survive only in the vicinity of the waved
surface and vanish sufficiently far from the surface. We propose
for these wave-induced motions observed near the waved surface
the name ‘pre-turbulent motions’. This regime is only briefly
discussed in the present article and investigated in detail in our
follow-up article (Druzhinin et al., 2015, Part 2).

The numerical method used in the present study takes into
account the effect of stratification and solves both the Navier-
Stokes equations for the fluid velocity and the temperature
deviation equation (Appendix). Otherwise, the method is quite
similar to that employed in the non-stratified case by Druzhinin
et al. (2012). In this case, we validated our numerical code by
comparison with both available laboratory data and DNS results
by Sullivan et al. (2000).

At the lower-plane boundary (ξ 3 = 0), the no-slip (Dirichlet)
condition for the velocity is prescribed. Thus, the airflow velocity
here coincides with the velocity of the water in the surface wave:

U1(ξ1, ξ2, 0) = c(ka cos kx1(ξ1, ξ3) − 1), (9)

U2(ξ1, ξ2, 0) = 0, (10)

U3(ξ1, ξ2, 0) = cka sin kx1(ξ1, ξ3). (11)

At the upper boundary (ξ 3 = 1), the no-slip condition for the
wind velocity is prescribed with respect to the plane moving with
non-dimensional velocity (1 − c):

U1(ξ1, ξ2, 1) = 1 − c, (12)

U2(ξ1, ξ2, 1) = 0, (13)

U3(ξ1, ξ2, 1) = 0. (14)

The temperature deviation is set equal to 0 at both lower and
upper boundaries:

T̃(ξ1, ξ2, 0) = T̃(ξ1, ξ2, 1) = 0. (15)
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Periodical boundary conditions are prescribed at the side
boundaries of the computational domain, namely at ξ 1 = 0, 6
and ξ 2 = 0, 4.

The velocity field is initialized as a weakly perturbed laminar
Couette flow, Ui = ξ 3δi1 + uif (i = 1, 2, 3) where uif is a
divergence-free isotropic, homogeneous random field with a
broad power spectrum and the modulus amplitude 0.05. The
initial temperature deviation field is put to 0. During the transient,
at times t < 100, the effect of stratification is artificially delayed
and negligible (cf. Appendix). By this means, a fully developed,
non-stratified turbulent regime is allowed to set in. At later
times, the buoyancy force becomes significant and modifies the
airflow. The integration is advanced in time until a statistically
stationary flow regime is established. Then sampling of the velocity
and temperature fields is performed at discrete time moments
tk, k = 1, . . . , 1000, with interval tk + 1 − tk = 0.2. The averaging
over the wave length is performed as a window averaging.

We denote by the angular brackets the phase averaging
equivalent to averaging over turbulent fluctuations, i.e. for a given
field f (ξ 1, ξ 2, ξ 3, t), the phase-averaged field, 〈f 〉, and dispersion
field, 〈f 2〉, are determined as:

〈f 〉(ξ1, ξ3) = 1

6NtNy

Ny∑
j=1

Nt∑
k=1

5∑
n=0

f (ξ1 + nλ, ξ2j, ξ3, tk), (16)

〈f 2〉(ξ1, ξ3) = 1

6NtNy

Ny∑
j=1

Nt∑
k=1

5∑
n=0

f 2(ξ1 + nλ, ξ2j, ξ3, tk), (17)

where Ny = 240, Nt = 500 and 0 < ξ 1 < 1. The fluctuation of the
field f is further obtained in the form:

f
′ = (〈f 2〉 − 〈f 〉2)1/2. (18)

We also introduce rectangular brackets for the mean vertical
profile of the field f , [f ](ξ 3), obtained by additional averaging of
the phase-average 〈f 〉(ξ 1, ξ 3) along the streamwise coordinate:

[f ](ξ3) = 1

Nx

Nx/6∑
k=1

〈f 〉(ξ1k, ξ3), (19)

where Nx = 360. Then, vertical profiles of mean turbulent fluxes
of momentum and heat, τ (ξ 3) and F(ξ 3), are determined as

τ = [〈U1〉〈U3〉 − 〈U1U3〉], (20)

F = [〈T̃〉〈U3〉 − 〈T̃U3〉], (21)

We define the conventional turbulent velocity and temperature
scales, namely, u* (friction velocity measured in m s−1) and �*

(measured in K) expressed through the dimensionless turbulent
fluxes, τ and F (Eqs (20) and (21)), as

u∗ = U0
√

τ , �∗ = ��F/
√

τ , (22)

where τ and F are taken at sufficiently large distance from
the waved surface, where they reach asymptotically constant
values. The Obukhov turbulent length-scale L (measured
in m) is:

L = u2∗
(g/�0)�∗

. (23)

Note that traditional definition of the Obukhov length includes
the von Kármán constant, κ , known only approximately, in the
denominator on the r.h.s. of Eq. (23). We do not follow this
tradition because it causes additional uncertainties in empirical
dependencies on z/L.
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Figure 2. Vertical profiles of the turbulent Reynolds number ReL (Eq. (24))
in DNS of stably stratified flows over a flat surface for different Reynolds and
Richardson bulk numbers.

3. The effect of stratification on turbulent flow regimes over
flat and waved surfaces

The particular case of stably stratified turbulent flow over a
smooth flat surface can be investigated with the aid of the DNS
procedure described in section 2 by setting zero values of the phase
velocity, c = 0, and wave slope, ka = 0. We performed such DNS
for the bulk Reynolds number, Re, defined by Eq. (7), from 15 000
to 80 000 and bulk Richardson number, Ri, Eq. (8), from 0 to 0.5
(cf. Table 1). At sufficiently small Ri, DNS reproduces a statistically
stationary turbulent regime with vertical profiles of mean velocity
and temperature obeying the Monin-Obukhov similarity theory.
At large Ri, turbulence degenerates. We investigated the transition
from the turbulent to the laminar regime as dependent on both
Reynolds and Richardson numbers, and compared our results
with those of the previous study by Flores and Riley (2011).
These authors compiled available laboratory and numerical data
and performed DNS of their own to analyse the transition from
turbulent to laminar regime in terms of the turbulent Reynolds
number, ReL, based on the Obukhov length-scale and friction
velocity:

ReL = Lu∗
κν

. (24)

Note that, in Eq. (24), we included the von Kármán constant,
κ = 0.4, in the denominator, as compared to the original definition
of ReL by Flores and Riley (2011), to account for the absence of κ

in the definition of the Obukhov length L in Eq. (23).
The basic result obtained by Flores and Riley (2011) is that the

stationary turbulent regime is maintained at ReL > 100; otherwise
turbulence degenerates and the flow becomes laminar. Our DNS
confirms this conclusion. Figure 2 presents vertical profiles of
the turbulent Reynolds number, ReL, for different bulk Reynolds
numbers: Re = 15 000, 30 000, 40 000, and 80 000. For each Re,
we determined appropriate critical Richardson number, Ric, such
that for Ri > Ric turbulence degenerated. Then we considered
vertical profiles of ReL for Ri close to Ric. As seen in Figure 2, at
sufficiently large bulk Reynolds numbers (Re = 40 000 and 80 000),
the turbulent Reynolds number, ReL , asymptotically tends to the
threshold value ReL ≈ 100 found by Flores and Riley (2011).

We note that Flores and Riley (2011) used the constant heat flux
condition (which implied cooling), whereas we use the prescribed
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Figure 3. Temporal development of root mean square fluctuations of velocity (U ′, V ′, W ′) and temperature (�′) in stably stratified boundary-layer flows over waved
surfaces, obtained in DNS for different bulk Reynolds, Re, and Richardson, Ri, numbers at the wave slope ka = 0.2 and dimensionless phase velocity c/U0 = 0.05.
(a,c) Represent the fully developed turbulence regime under subcritical stable stratification, whereas (b,d) show the wave-induced residual-turbulence regime under
strongly stable (supercritical) stratification.

temperature at the surface. However, the boundary condition
for temperature does not directly influence the above criterion:
ReL < 102. The physical meaning of this criterion is quite clear: the
Reynolds number should be large enough (and hence, the viscous
damping small enough) to allow for the existence of turbulent
motions. The key point is that Flores and Riley (2011) have found
for the flow in question the relevant velocity- and length-scales: u*

and L. They have shown that the criterion obtained in their DNS
explains the transition from a stationary turbulent to a laminar
regime observed both in field experiments and previous numerical
studies where the isothermal (fixed temperature) condition at the
surface was considered as well.

We performed DNS of stably stratified flows over waved
surface for the wave slope 0 < ka < 0.2, bulk Reynolds number
15 000 < Re < 40 000, bulk Richardson number 0 < Ri < 0.1, and
different phase velocities c. Our DNS reveal quite similar control
of the flow regime by Ri. Figure 3 shows temporal variation of the
amplitudes of turbulent fluctuations of wind velocity (U

′
, V

′
, W

′
)

and temperature (�′), defined as maxima of the corresponding
fluctuation fields obtained from Eq. (18),

U
′
, V

′
, W

′ ≡ U0 max{U ′
i }, i = 1, 2, 3;�

′ ≡ �� max{T̃ ′ }, (25)

in DNS with the wave slope ka = 0.2 and dimensionless wave
phase velocity c/U0 = 0.05 for the two bulk Reynolds numbers
Re = 15 000 (a,b) and Re = 40 000 (c,d), and four Richardson
numbers: Ri = (a) 0.04, (b) 0.08, (c) 0.1, and (d) 0.2. At
sufficiently small Richardson numbers (Ri = 0.04 for Re = 15 000

(Figure 3(a)), and Ri = 0.1 for Re = 40 000 (Figure 3(c)), the
amplitudes of fluctuations, after initial transients, saturate, so
that a stationary turbulent regime sets in. At larger Richardson
number (Ri = 0.08 for Re = 15 000 in Figure 3(b), and Ri = 0.2
for Re = 40 000 in Figure 3(d)), the amplitudes of fluctuations
considerably decrease compared to cases shown in Figure 3(a,c).
The critical Richardson numbers (their own for each Re) are
close to those found in the flat surface case; however velocity and
temperature fluctuations in the supercritical stratification remain
finite even at large times.

Figure 4 shows the instantaneous vorticity modulus,ω(x,y,z), in
different planes, obtained in DNS with Re = 15 000 and Ri = 0.04,
for ka = 0.2 and dimensionless wave phase velocity c/U0 = 0.05
(corresponding to the wave age c/u* ≈ 2). The Obukhov length-
scale, Eq. (23), is L ≈ 0.3 and ReL ≈ 300, so that the Flores
and Riley criterion, ReL > 100, is satisfied. As illustrated, the
flow is turbulent throughout the domain and exhibits numerous
separation points and formation of �-shaped vortices (Moin and
Kim, 1985) in the vicinity of the wave crests similar to those
observed in DNS of non-stratified boundary-layer flow over a
waved surface (Druzhinin et al., 2012).

The supercritical regime observed in DNS with the same
Reynolds number and wave slope and celerity but for Ri = 0.08
is presented in Figure 5. The figure shows that pre-turbulent
fluctuations are quite pronounced in the vicinity of the waved
surface, where the vorticity field exhibits complicated 3D
structure, and these fluctuations decay sufficiently far from the
surface.
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(a)

(b)

(c)

Figure 4. Instantaneous contours of the vorticity modulus in (a) x-z, (b) y-z and (c) x-y planes in statistically stationary, stably stratified boundary-layer flow over a
waved surface with the wave slope ka = 0.2 and dimensionless phase velocity c/U0 = 0.05 (c/u* ≈ 2), obtained in DNS for Re = 15 000 and Ri = 0.04 at t = 1000. Level
z/λ = 0.042 corresponds to u*z/ν ≈ 16 and/or z/L ≈ 0.12.

It follows that there is a principal difference between supercriti-
cally stratified (Ri > Ric) boundary-layer flows over the flat surface
and waved surface. In the first case, supercritically stratified tur-
bulence degenerates, and the flow becomes laminar. In the second
case, turbulence also decreases under supercritical stratification,
but finite velocity and temperature fluctuations survive near the
surface-wave boundary and could affect the entire flow. These
‘pre-turbulent’ fluctuations manifest themselves most obviously
in the vicinity of the critical layer, where the surface-wave phase
velocity coincides with the mean flow velocity. The intensity of
such fluctuations monotonically decreases with increasing bulk
Richardson number. This supercritically stratified flow regime is
studied in details in our follow-up study (Druzhinin et al. (2015),
Part 2). Below we consider only stationary turbulent flow regimes.

4. Vertical profiles of the mean velocity and temperature

Our DNS produce vertical profiles of the mean velocity U(η)
and the deviation of mean temperature from its surface value,
(�(η) − �1), which are in good agreement with the Monin-
Obukhov similarity theory (cf. Monin and Yaglom, 1971). Figure 6
shows the profiles for Re = 15 000, Ri = 0.04 and different wave
slopes and phase velocities. The mean profiles are well described
by the familiar approximation:

U(η)

u∗
= 1

κ

(
ln

η

z0U
+ CU

η

L

)
, (26)

�(η) − �0

�∗
= Prt

κ

(
ln

η

z0�

+ CU
η

L

)
, (27)

where z0U and z0� are effective roughness lengths, κ the von
Kármán constant, CU is one more empirical dimensionless
constant, and Prt the turbulent Prandtl number. Results from
DNS shown in Figure 6 yield practically the same estimates:
κ = 0.4, CU = 2 and Prt = 0.85 as observed in most laboratory
and field experiments. We recall that our definition of the
Obukhov length-scale L, Eq. (23), does not include the von
Kármán constant, κ , whereas the popular version of this scale, L̃,
includes κ in the denominator, so that L̃ = L/κ . Then the second
term on the right-hand side in brackets in Eqs (26) and (27)
becomes CU

η

κ L̃
= C̃U

η

L̃
where C̃U = CU

κ
= 5.

As seen from Figure 6, increasing the wave slope ka leads to
reducing the ratios U/u* and (�− �0)/�*. This is only natural,
as the larger values of ka cause the larger roughness lengths z0U

and z0�, and therefore substantially larger u* but only a bit larger
�*. The term

√
τ = u∗/U0 in the denominator on the r.h.s. of

the second Eq. (22) just explains why the effect is less pronounced
in the temperature profile.

Roughness lengths z00U and z00� for the flat surface are
determined by conventional relations (e.g. Monin and Yaglom,
1971):

z00U = ν

u∗
exp(−5κ), (28)

z00� = ν

u∗
exp(−2.5κ). (29)

For waved surfaces, we determined these parameters by
matching Eqs (26) and (27) with DNS data and obtained
essentially larger values: z0U = 2 z00U and z0� = 1.5 z00� at
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(a)

(b)

(c)

Figure 5. Instantaneous field of the vorticity modulus in (a) x-z plane at y = 0, (b) y-z plane at x = 3 and (c) x-y plane at z = 0.12, obtained from DNS of the
wave-induced pre-turbulence in stably stratified boundary-layer flows for the bulk Reynolds number Re = 15 000, bulk Richardson number Ri = 0.08, wave slope
ka = 0.2, and dimensionless phase velocity c/U0 = 0.05, at time t = 1000.

wave slope ka = 0.1; and z0U = 15 z00U and z0� = 4 z00� at
ka = 0.2. DNSs also revealed that increasing phase velocity from
c/U0 = 0.05 to c/U0 = 0.2 had no significant effects on mean
profiles (Figure 6).

Good agreement with the Monin-Obukhov similarity theory
laws analogous to Eqs (26) and (27), but with η denoting the
height over a flat surface, was observed in many previous DNS
studies of stably stratified turbulent boundary-layer flows (e.g.
Nieuwstadt, 2005; Ansorge and Mellado, 2014; Deusebio et al.,
2014). In the present study we consider the same laws but use the
wave-following coordinate, η, Eqs (4) and (5).

Figure 7 shows the turbulent Prandtl number

Prt = u∗
�∗

d�

dη

(
dU

dη

)−1

(30)

versus dimensionless height, u*η/ν, evaluated from DNS for
different wave slopes and phase velocities. In all cases with
c/U0 = 0.05 (slow waves, e.g. Sullivan et al., 2000; Yang and
Shen, 2010), the general behaviour is as follows: in the vicinity
of the water surface Prt ≈ 1, then it decreases and saturates at
Prt ≈ 0.85 for u*η/ν > 100 (which corresponds in our DNS to
η/L > 0.3). At phase velocity c/U0 = 0.2 (intermediate waves),
Prt is somewhat higher in the vicinity of the water surface
(where it approaches about 1.2) but plateaus at the same
approximate value (Prt ≈ 0.85) as for c/U0 = 0.05. All the
above features of mean profiles obtained from DNS agree well
with the majority of known laboratory, numerical and field
experiments.

5. Vertical fluxes of momentum and heat and root mean
square fluctuations

Budgets of total vertical fluxes of momentum and heat are derived
from the equations for the streamwise velocity component and
the temperature deviation (cf. Appendix, Eqs (A5) and (A8)) by
averaging over time and ξ 2-coordinate (along the wave front).
Under the stationary turbulent regime, in the absence of a mean
streamwise pressure gradient, the resulting equations are rewritten
in curvilinear coordinates as follows:{

∂

∂ξ1

(
∂x1

∂ξ1

)
+ ∂

∂ξ3

(
∂x1

∂ξ3

)}
〈U2

1 + P〉

+
{

∂

∂ξ1

(
∂x3

∂ξ1

)
+ ∂

∂ξ3

(
∂x3

∂ξ3

)}
〈U1U3〉

= 1

Re

(
∂2

∂ξ 2
1

+ ∂2

∂ξ 2
3

)
〈U1〉, (31){

∂

∂ξ1

(
∂x1

∂ξ1

)
+ ∂

∂ξ3

(
∂x1

∂ξ3

)}
〈TU1〉

+
{

∂

∂ξ1

(
∂x3

∂ξ1

)
+ ∂

∂ξ3

(
∂x3

∂ξ3

)}
〈TU3〉

= 1

RePr

(
∂2

∂ξ 2
1

+ ∂2

∂ξ 2
3

)
〈T〉, (32)

where T ≡ T̃ + ξ3. Now averaging Eqs (31) and (32) over ξ 1,
taking into account periodicity over ξ 1 and ξ 2, and integrating
over ξ 3 yields the following momentum-flux and heat-flux
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Figure 6. Vertical profiles of (a) the mean velocity and (b) temperature in the stationary turbulent boundary-layer flow over a waved water surface, obtained in
DNS for Re = 15 000 and Ri = 0.04 at different wave slopes ka, and dimensionless phase velocities c/U0. The viscous-sublayer approximation and the log-linear
approximation, Eqs (26) and (27), are shown by the dashed and the solid lines, respectively.
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Figure 7. Vertical profiles of the turbulent Prandtl number, Prt, in stationary,
turbulent boundary-layer flow over a waved water surface, obtained in DNS for
Re = 15 000 and Ri = 0.04 for different wave slopes ka, and dimensionless phase
velocities c/U0.

balance conditions:[
1

Re

∂〈U1〉
∂ξ3

+ ∂x3

∂ξ1
〈U2

1 + P〉 − ∂x3

∂ξ3
〈U1U3〉

]
= u2∗

U2
0

, (33)

[
1

RePr

∂〈T〉
∂ξ3

+ ∂x3

∂ξ1
〈TU1〉 − ∂x3

∂ξ3
〈TU3〉

]
= u∗�∗

U0��
, (34)

where angular and square brackets denote phase-average and
streamwise-average, respectively. Left-hand sides in Eqs (33) and
(34) can be represented as sums of three contributions to total
fluxes. In the dimensional form, these budgets read

τt + τv + τw = u2
∗, (35)

Ft + Fv + Fw = u∗�∗, (36)

where τt = U2
0 τ and Ft = U0��F are dimensional turbulent

fluxes proportional to the dimensionless fluxes τ and F, Eqs (20)
and (21); τ ν and Fv are viscous fluxes:

τv = U2
0

Re

d[〈U1〉]
dη

, (37)

Fv = U0��

RePr

d[〈T〉]
dη

. (38)

Finally wave-induced fluxes, τw and Fw, are obtained as
respective residual contributions on the left-hand side of Eqs
(34) and (35) as:

τw = U2
0

[
∂x3

∂ξ1

〈
U2

1 + P
〉 − (

∂x3

∂ξ3
− 1

)
〈U1U3〉 − 〈U1〉〈U3〉

]
,

(39)

Fw = U0��

[
∂x3

∂ξ1
〈TU1〉 −

(
∂x3

∂ξ3
− 1

)
〈TU3〉 − 〈T〉〈U3〉

]
.

(40)

Figure 8 shows the shares of all three components to the
total vertical fluxes of momentum and heat obtained in DNS
of stationary turbulent boundary-layer flow at Re = 15 000 and
Ri = 0.04 for different wave slopes and phase velocities. For wave
slope ka = 0.2, the wave-induced flux of momentum, τw, at the
water surface nearly equals the viscous stress, τ v, which means
that the form drag equals the viscous drag. For ka = 0.1, the wave-
induced flux at the water surface is about three times smaller than
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Figure 8. Turbulent, viscous and wave-induced shares of the total vertical fluxes of (a, c, e) momentum and (b, d, f) heat in stably stratified boundary-layer flows
over waved surfaces with (a, b) ka = 0.2, c/U0 = 0.05, c/u* ≈ 2; (c, d) ka = 0.1, c/U0 = 0.05, c/u* ≈ 2; and (e, f) ka = 0.2, c/U0 = 0.2, c/u* ≈ 8 in DNS for Re = 15 000
and Ri = 0.04.

the viscous stress. Both τw and τ v become negligible compared
to the turbulent flux, τ t, sufficiently far from the surface, at
u*η/ν > 40.

The wave-induced heat flux, Fw, for wave slope ka = 0.2 is
negligible compared to the molecular heat flux, Fv, in the
vicinity of the waved surface (at u*η/ν < 10). With increasing
height, Fw increases and becomes of the same order as Fv: at
u*η/ν ≈ 10 for phase velocity c/U0 = 0.05, and at u*η/ν ≈ 20 for
c/U0 = 0.2. For wave slope ka = 0.1, the wave-induced heat flux
is negligible compared to the turbulent and viscous heat fluxes,
Ft and Fv. Similarly to the wave-induced and the viscous fluxes

of momentum, heat fluxes Fw and Fv both return to 0 sufficiently
far from the surface.

Results from DNS of airflows over flat and waved boundaries
for different bulk Richardson numbers shown in Figure 9
demonstrate how the wave phase velocity, wave slope and
stable stratification affect vertical profiles of turbulent fluxes
of momentum and heat. The fluxes are generally enhanced by
surface waves with larger slope ka, and weakened by strengthening
stratification and increasing wave phase velocity.

Figure 10 presents vertical profiles of the mean velocity and
temperature gradients, dU/dη and d�/dη, and the root mean
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Figure 9. Profiles of (a, c) turbulent momentum and (b, d) heat fluxes, τ t and Ft, obtained in DNS with Re = 15 000 under the stationary turbulent regime of stably
stratified boundary-layer flow over a waved surface for different slopes ka, phase velocities c/U0, and bulk Richardson numbers Ri. The profiles obtained for the flat
boundary case (no wave, with ka = 0) with Ri = 0.04 are also provided for comparison.

square velocity and temperature fluctuations, (U
′
, V

′
, W

′
) and

(�′), Eq. (25), obtained in DNS of the stationary turbulent
regime at Ri = 0.04. The fluctuations are obviously enhanced at
larger wave slope, whereas the velocity and temperature gradients
remain unaffected in the bulk of the flow domain – outside the
viscous and buffer layers (at η/λ > 0.1). Hence the root mean
square fluctuations, as well as turbulent fluxes, substantially
increase with increasing wave slope, whereas the gradients of
mean velocity and temperature remain practically the same. It
follows that the enhancement of turbulence is originated by the
surface wave rather than by the shear instability of the mean flow.
The enhancement of the turbulent flux of momentum by larger
wave slope is also due to larger form drag (cf. Figure 9). It deserves
emphasising that the heat flux is also increased by the surface
wave, in spite of no thermal analogue to the form drag.

Results from our DNS offered a clearer view on the difference
between the regimes of real turbulence and weak turbulence-
like motions, which occurred in two numerical experiments for
same wave slope ka = 0.2 but different bulk Reynolds numbers
Re = 15 000 and 40 000. Similarly to Flores and Riley (2011) and

to our analyses of the airflows over a flat surface, we determined
for each Re the critical bulk Richardson number Ric, such that for
Ri < Ric the flow remains turbulent but for larger Ri turbulence
decays (cf. Figure 3). At the same time, over the waved surface the
situation is more complicated. Figure 11 1shows vertical profiles
of the turbulent Reynolds number ReL, Eq. (24), for the bulk
Richardson number just below the critical value at Re = 15 000
and 40 000. The figure reveals almost the same threshold value
of ReL ∼ 100 as for the flows over a flat surface (cf. Figure 2).
However, in supercritically stratified airflows over waves, the
latter excite in the airflow weak ‘pre-turbulent’ motions, which
neither decay nor develop into real turbulence (cf. Figure 3).
We consider this newly recognised regime in more detail in the
follow-up article (Druzhinin et al., 2015).

6. Conclusions

This article summarises results obtained by direct numerical
simulation (DNS) of stably stratified turbulent boundary-layer
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Figure 10. Vertical profiles of mean gradients of (a) velocity dU/dz , (b) temperature d�/dz, and root mean square fluctuations of velocity, (c) U ′, (d) V ′, (e) W ′, and
(f) temperature �′, in DNS of stably stratified turbulent boundary-layer flows over waved surfaces with c/U0 = 0.05 (c/u* ≈ 2) and two different wave slopes (ka = 0.2
and ka = 0.1) and over a flat surface (c/U0 = 0 and ka = 0), for Re = 15 000 and Ri = 0.04.

flow over flat and waved water surfaces. In the statistically
stationary, turbulent regime observed in DNS for not too
large bulk Richardson numbers, the simulated mean velocity
and temperature profiles, Eqs (26) and (27), are quite similar
to the log-linear profiles observed in the atmospheric surface
layer. Moreover, the turbulent Prandtl number Prt, von Kármán

constant κ , and dimensionless constant CU in the linear term
are practically the same as in the atmosphere and DNS: κ = 0.4,
Prt = 0.85, and CU = 2.

The wind and temperature roughness lengths, z0U and z0�,
obtained from DNS, increase with the increasing surface wave
slope. For z0U , this effect is well-known and easily explained
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Figure 11. Vertical profiles of the Reynolds number ReL in DNS of stably stratified
boundary-layer flow over a waved surface with slope ka = 0.2 for different bulk
Reynolds and Richardson numbers.

by the form drag. DNS clearly show the similar (although less
pronounced) effect for z0�. This important fact deserves attention
because the heat-transfer mechanisms have no visible similarity
to the form-drag mechanism.

Results from our DNS offer a clearer view of the viscous/
molecular, turbulent and wave-induced contributions to the
vertical turbulent fluxes of momentum and heat at different
elevations over the water surface for different wave slopes and
phase velocities. To the best of our knowledge, such quantitative
analyses have not been performed previously.

Comparative analyses of the mean velocity and temperature
gradients and turbulent velocity and temperature fluctuations
obtained in DNS reveal that the increasing wave slope enhances
turbulent fluctuations but does not affect mean velocity and
temperature gradients. It follows that the observed enhancement
of turbulence is caused directly by the surface waves rather than
indirectly by the mean-flow instability.

Our DNS results confirm the Flores and Riley (2011) criterion
of transition from turbulent to laminar regime over a flat surface,
namely the turbulent Reynolds number ReL = u*L/(κν) with the
threshold value Reth

L ≈ 102. Our DNS reveal precisely the same
threshold over waved surfaces, but with important proviso: over
steep waves Reth

L ≈ 102 separates the regimes of real turbulence
and ‘pre-turbulent’ wave-induced motions most pronounced in
the vicinity of the water surface.
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A. Appendix: Governing equations in curvilinear coordinates.

We define dimensionless Cartesian coordinates as x1 = x/λ, x2 =
y/λ, x3 = z/λ. Then, due to the conformal properties of the
mapping, Eqs (4) and (5), the following relationships hold:

∂ξ1

∂x1
= ∂ξ3

∂x3
= 1

J

∂x1

∂ξ1
= 1

J

∂x3

∂ξ3
, (A1)

∂ξ1

∂x3
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∂x1
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J
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, (A2)

where J =
(

∂x1
∂ξ1

)2 +
(

∂x1
∂ξ3

)2
is the Jacobian of the mapping. The

derivatives over x1 and x3 are replaced by the derivatives over ξ 1

and ξ 3:
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and the Laplacian operator in curvilinear coordinates becomes
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= 1
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(
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)
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Using Eqs (A1)–(A4), the governing Navier-Stokes equations
for the dimensionless velocity components U1,2,3 and temperature
deviation T̃ can be written in dimensionless curvilinear
coordinates:
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We introduce the factor f in the last term on the right hand
site of Eq. (A7) in the form

f (t) = 1 − exp(−t/100), (A9)

where t is the dimensionless time. The function f (t) ‘switches
on’ the buoyancy force and the related stabilizing effect of
stratification at times t � 100, so that the non-stratified turbulent
Couette flow regime is allowed to develop at times t < 100.

Following Druzhinin et al. (2012), we also employ mapping
over the vertical coordinate:

ξ3 = 0.5

(
1 + tanh η̃

tanh 1.5

)
, (A10)

where −1.5 < η̃ < 1.5. Equation (A10) introduces non-uniform
spacing of computational nodes in the vertical direction,
with stretching in the middle of the domain (for η̃ ≈ 0 and
x3 ≈ ξ 3 ≈ 0.5) and clustering near the boundaries (for η̃ ≈ ±1.5
and x3 ≈ ξ 3 ≈ 0 or 1). Due to Eq. (A10), the derivative over
compressed curvilinear coordinate η̃ is expressed via the derivative
over ξ 3:

∂

∂ξ3
= 2 tanh 1.5 cosh η̃

∂

∂η̃
. (A11)

Integration of Eqs (A5)–(A8) is advanced in time by the
second-order accuracy Adams-Bashforth method in two stages
at each time step n. To calculate the wind velocity at the new
(n + 1) time step, firstly an intermediate velocity, Ũi, is calculated
using the velocity and the temperature deviation obtained at the
preceding time steps, (Un−1

i , T̃n−1) and (Un
i , T̃n):

Ũi = Un
i +

(
3

2
FU

i

(
Un

i , T̃n, tn
) − 1

2
FU

i (Un−1
i , T̃n−1, tn)

)
�t.

(A12)

Then the flux FT(Ui, T̃, t) is calculated:

Fi(Ui, T̃, t) = −∂(UiUj)

∂xj
+ 1

Re

∂2Ui

∂xj∂xj
+ δizRiT̃f (t). (A13)

Here and below in Eqs (A14)–(A19), we use for brevity the
derivatives over Cartesian coordinates x1 and x3, which are
readily expressed in the same manner as in Eqs (A1)–(A3) via
the derivatives over curvilinear coordinates ξ 1 and ξ 3; and the
Laplacian operator is rewritten in the same manner in Eq. (A4).
Then, the air pressure at the n + 1 time step is obtained by solving
the Poisson equation:

∂2Pn+1

∂xj∂xj
= 1

�t

∂Ũj

∂xj
, (A14)

where the velocity divergence on the r.h.s. in curvilinear
coordinates reads:

∂Ũj

∂xj
= 1

J

{
∂

∂ξ1

(
∂x1

∂ξ1
Ũ1

)
+ ∂

∂ξ3

(
∂x1

∂ξ3
Ũ1

)
+ ∂

∂ξ1

(
∂x3

∂ξ1
Ũ3

)
+ ∂

∂ξ3

(
∂x3

∂ξ3
Ũ3

)}
+ ∂Ũ2

∂ξ2
. (A15)

The pressure equation(
∂2

∂ξ 2
1

+ ∂2

∂ξ 2
2

+ ∂2

∂ξ 2
3

)
Pn+1

k = 1

J

∂Ũj

∂xj
+

(
1 − 1

J

)
∂2Pn+1

k−1

∂ξ 2
2

(A16)

is solved by iterations (k is the iteration number) employing
the fast Fourier transform over ξ1, ξ2 coordinates and the Gauss

elimination method over the ξ 3-coordinate. The iteration proce-
dure stops when the condition max{|Pk − Pk − 1|/|Pk − 1|}< 0.01
is satisfied. Usually this condition is reached after three to five
iterations (Druzhinin et al., 2012). Then new velocity at n + 1
time step, satisfying the incompressibility condition, Eq. (2), is
calculated:

Un+1
i = Ũi − ∂Pn+1

∂xj
�t. (A17)

The temperature deviation at a new (n + 1) time step is
calculated using data from the previous step:

T̃n+1 = T̃n +
(

3

2
FT

(
Un

i , T̃n
) − 1

2
FT(Un−1

i , T̃n−1)

)
�t, (A18)

where FT(Ui, T̃) is the temperature flux:

FT(Ui, T̃) = −∂(UjT̃)

∂xj
− Uz + 1

PrRe

∂2T̃

∂xj∂xj
. (A19)
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