
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. (2015) DOI:10.1002/qj.2678

Stably stratified air-flow over a waved water surface. Part 2:
Wave-induced pre-turbulent motions

O. A. Druzhinin,a,b* Y. I. Troitskayaa,b,c and S. S. Zilitinkevichb,d,e,f,g

aInstitute of Applied Physics, Russian Academy of Sciences, Ul’yanova str. 46, Nizhny Novgorod 603950, Russia
bRadiophysics Department, University of Nizhny Novgorod, Russia

cInstitute of the Physics of Atmosphere, Russian Academy of Sciences, Moscow, Russia
dPhysics Department, Moscow State University, Moscow, Russia

eInstitute of Geography, Russian Academy of Sciences, Moscow, Russia
fFinnish Meteorological Institute, Helsinki, Finland

gDivision of Atmospheric Sciences, University of Helsinki, Finland

*Correspondence to: O. A. Druzhinin, Institute of Applied Physics, Russian Academy of Sciences, Ul’yanova str. 46, Nizhny
Novgorod 603950, Russia. E-mail: druzhinin@hydro.appl.sci-nnov.ru

Recent experimental and direct numerical simulation (DNS) studies have discovered that
stably stratified boundary-layer turbulence over a flat surface is characterized by the critical
Reynolds number, ReL, based on the Obukhov turbulent length-scale and the friction
velocity, such that the transition from turbulent to laminar regime occurs at ReL ≈ 102.
We have performed DNS of stably stratified flows over both flat and waved surfaces for
a wide range of bulk Reynolds numbers and Richardson numbers and revealed that the
same threshold, ReL = 102, holds true over waved surfaces. However, when the surface
wave slope is sufficiently steep, the supercritically stratified flow involves wave-induced,
‘pre-turbulent’ flow patterns, most pronounced in the vicinity of the waved water surface.
In the present article, we study basic properties of these motions through DNS and propose
a theoretical model of their generation via secondary parametric resonance instability of
two-dimensional disturbances induced in the air-flow by the surface waves.
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1. Introduction

Recent laboratory studies and direct numerical simulation (DNS)
of stably stratified boundary-layer flows over flat, aerodynamically
smooth surfaces have revealed the criterion of transition between
turbulent and laminar regimes based on the turbulent Reynolds
number:

ReL = Lu∗
κν

> 100, (1)

where ν is kinematic viscosity, κ = 0.4 is the von Kármán constant,
u* the friction velocity, and L = −u3∗/(Ftg/�0) is the Obukhov
length-scale based on the vertical turbulent kinematic heat flux, Ft,
gravitational acceleration g and a reference potential temperature
�0 (Flores and Riley, 2011). The steady-state turbulent regime
is maintained at ReL > 102 whereas at smaller ReL turbulence
degenerates and the flow becomes laminar. Further DNS of
the stably stratified turbulent Couette flow over waved surfaces,
performed by Druzhinin et al. (2015), Part 1 for a wide range
of the bulk Reynolds and Richardson numbers, has revealed
that the same critical value of the turbulent Reynolds number,

ReL = 102, holds true for the flows over waved water surfaces. In
the present article, we show that supercritically stratified flows
over waves involve wave-induced disturbances, well-pronounced
in the vicinity of the waved surface but weaker or even zero in the
bulk of the flow domain. We also show that secondary instabilities
of wave-induced 2D disturbances can cause formation of ‘pre-
turbulent’ flow patterns, which become irregular for sufficiently
steep waves and high Reynolds numbers. We consider in detail this
pre-turbulent flow regime and suggest a theoretical interpretation
of the origin of the observed pre-turbulent motions.

The design of DNS is the same as described by Druzhinin
et al. (2015), Part 1. We consider a turbulent Couette flow above
waved water surfaces in the Cartesian framework with the x-axis
oriented along the mean wind, the z-axis oriented vertically
upwards, and the y-axis parallel to the wave front, orthogonally
to the mean flow. At the lower boundary, we prescribe a two-
dimensional wave, periodic in the x-direction, with the amplitude
a, wavelength λ and phase velocity c, and with wave slope up to
ka = 2πa/λ= 0.2. DNS is performed in a reference frame moving
with the wave phase velocity. The no-slip boundary conditions are
prescribed at both the lower boundary, where the wind velocity
coincides with the velocity of the water surface wave, and the
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Figure 1. Root mean square fluctuations of the streamwise, transverse, and vertical velocity components, U ′, V ′ and W ′, and temperature, �′, as functions of (a)
Richardson number, Ri, for constant wave slope, ka = 0.2, and (b) wave slope, ka, for Ri = 0.08, in DNS of stably stratified boundary-layer flows over waved surfaces
for Re = 15 000.

upper boundary, which is defined as a horizontal plane moving
in the x-direction with the bulk velocity U0. The computational
domain has sizes Lx = 6λ, Ly = 4λ and Lz = λ in the x-, y-, and
z-directions, respectively; and the wind flow is assumed to be
periodic in the x- and y-directions. To establish the stable density
stratification, we prescribe the temperatures � at the top and
bottom boundary planes: � = �0 at z = 0 and �= �0 + �� at
z = Lz , where �� > 0.

The governing equations (full three-dimensional (3D) Navier-
Stokes equations for incompressible fluid under the Boussinesq
approximation) and the numerical method are described in detail
by Druzhinin et al. (2015), Part 1). The governing parameters of
the flow are the bulk Reynolds number:

Re = U0λ

ν
(2)

and the bulk Richardson number:

Ri = g
��

�0

λ

U2
0

, (3)

where ν is kinematic viscosity of the air. The Prandtl number,
Pr = ν/μ (where μ is thermal diffusivity), is prescribed as Pr = 0.7.
Numerical simulations are performed for Re and Ri in the range
15 000 < Re < 80 000 and 0 < Ri < 0.3, the wave slope in the range
0 < ka < 0.2, and different values of the phase velocity, c.

DNS is performed in dimensionless coordinates: x1 = x/λ,
x2 = y/λ, and x3 = z/λ and dimensionless variables: temperature
deviation from the reference temperature, T̃ = [� − �ref ]/��,
and x-, y-, and z- velocity components, U1 = Ux/U0, U2 = Uy/U0,
and U3 = Uz/U0 (cf. Druzhinin et al., 2015, Part 1).

A conformal mapping is employed, which transforms the
Cartesian coordinates (x1, x3) into curvilinear coordinates (ξ , η),
in which the waved surface becomes the flat plane (η = 0). The
numerical grid is clustered in the vertical direction to provide
sufficient resolution of the flow near both bottom and top
boundary planes. The velocity field at the initial moment, t = 0,
is prescribed as a weakly perturbed laminar Couette flow; and
the initial temperature deviation from the reference profile is
taken to be 0. The sampling of the velocity and temperature
fields is performed at sufficiently late times when the stationary
turbulence regime sets in. The time averaging is performed during
the period when the flow has reached the statistically stationary
state, whereas averaging over the wavelength is performed as
the window-averaging. For a given field f (x1, x2, x3, t), the phase

average, 〈f 〉(x1, x3), and the dispersion, 〈f 2〉(x1, x3), are obtained
by the averaging over the wavelength in the x1-direction, along
the wave front in the x2-direction, and in time; the root mean
square fluctuation is obtained as:

f
′ = ([〈f 2〉] − [〈f 〉]2)1/2. (4)

The mean vertical profile, [〈f 〉](x3), is obtained by additional
averaging of the phase-averaged field over the streamwise
coordinate x1. Thus, vertical profiles of mean turbulent fluxes
of momentum and heat, τ (x3) and F(x3), are determined as

τ (x3) = [〈U1U3〉 − 〈U1〉〈U3〉], (5)

F(x3) = [〈U3T̃〉 − 〈U3〉〈T̃〉]. (6)

2. Basic features of the wave-induced pre-turbulent motions
revealed from DNS

Figure 1 shows the maxima of the root mean square velocity and
temperature fluctuations (U

′
, V

′
, W

′
and �′) as:

U
′
, V

′
, W

′ ≡ U0 max{U ′
i }, i = 1, 2, 3;�

′ ≡ �� max{T̃ ′ } (7)

(where U
′
i and T̃

′
are obtained as described in Eq. (4)) versus Ri

for the wave slope ka = 0.2, and versus ka for Ri = 0.08, obtained
in DNS for Re = 15 000. At the given wave slope ka = 0.2, the
developed turbulence regime and wave-induced pre-turbulence
regime are separated by the threshold bulk Richardson number
Rith ≈ 0.07 (Figure 1(a)); whereas at the given Ri = 0.08 these
regimes are separated by the threshold wave slope kath ≈ 0.14
(Figure 1(b)). Figure 1(a) shows that the rms values are drastically
(by an order of magnitude) reduced under the pre-turbulent
regime compared to the turbulent regime for Ri > 0.07. On the
other hand, Figure 1(b) shows that the occurrence of the pre-
turbulent regime is also characterized by a threshold value of the
wave slope (ka ≈ 0.12) so that, for fixed supercritical Ri > Rith

and sufficiently small ka (i.e. ka < 0.12), the fluctuations vanish,
and the pre-turbulent regime is not observed.

Figure 2 shows instantaneous fields of the vorticity modulus,
ω(x,y,z), in different cross-sections of the flow, obtained for
Re = 15 000, Ri = 0.08, ka = 0.2 and c/U0 = 0.05, at time t = 1000.
The figure shows that pre-turbulent fluctuations are quite
pronounced in the vicinity of the waved surface, where the
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Figure 2. Instantaneous field of the vorticity modulus in (a) the x,z plane at y = 0, (b) the y,z plane at x = 3 and (c) the x,y plane at z = 0.12, obtained from DNS of
the wave-induced pre-turbulence in stably stratified boundary-layer flows for the bulk Reynolds number Re = 15 000, bulk Richardson number Ri = 0.08, wave slope
ka = 0.2, and dimensionless phase velocity c/U0 = 0.05, at time t = 1000.

vorticity field exhibits a complicated 3D structure, and these
fluctuations decay sufficiently far from the surface.

Figure 3 shows dimensionless vertical profiles of the mean
velocity, U(z)/U0, deviation of the mean temperature from its
surface value, (�(z) − �0)/��, root mean square fluctuations
of velocity and temperature (U

′
, V

′
, W

′
and �′), Eq. (7), and

momentum and heat fluxes, Eqs (5) and (6) , obtained for
Ri = 0.08 at the phase velocities c/U0 = 0.05 and c/U0 = 0.2.
Maximal fluctuations and momentum fluxes in the wave-induced
pre-turbulent regime are observed in the vicinity of the critical
level z = zc, defined as the height where the wind velocity
coincides with the wave phase velocity: U(zc) = c. In DNS under
consideration, the critical level is zc ≈ 0.1 λ for c/U0 = 0.05 (a,b,c)
and zc ≈ 0.4 λ for c/U0 = 0.2 (d,e,f). In the case c/U0 = 0.05,
the heat flux, (-< U ′�′ >), turns to 0 at the critical level, is
positive above zc and negative below zc (cf. Figure 3(c)). On the
other hand, the heat flux is positive and has maximum at the
critical level for c/U0 = 0.2 (Figure 3(f)). Figure 3 shows that,
under the pre-turbulent regime, increasing wave speed reduces
the momentum flux and increases the heat flux.

Figure 3(a,d) also demonstrate vertical profiles of the gradient
Richardson number:

Rig = g

�0

d�/dz

(dU/dz)2
= N2

(dU/dz)2
, (8)

where N(z) is the buoyancy frequency. In both cases, Rig has
maximum at the critical layer and does not exceed the critical
value, Rig = 0.25, at all heights for c/U0 = 0.05 (a) and at the
heights z > 0.05 for c/U0 = 0.2 (d). In both cases, Rig increases
rapidly in the vicinity of the boundary, for z < 0.05.

Figure 4 presents instantaneous power spectrum, E(kx, ky),
obtained by the Fourier transform of the vorticity field in the
horizontal (x, y) plane shown in Figure 2. The spectrum exhibits
peaks at the wavenumbers k = (2π , 0), k1 = (π , 2π), k2 = (4π ,
0) and k3 = (0, 4π). The peak at k = (2π , 0) corresponds to the
two-dimensional (2D) disturbance directly induced in the air-
flow by the surface wave. However, the 2D forcing alone would
not be able to directly produce a 3D disturbance, heterogeneous
in the y-direction along the surface-wave front and characterized
by the energy peaks at wavenumbers k1 and k3. Below in the
section 3, we show that the 3D structure of the vorticity field in
the horizontal (x,y)-plane in Figure 2 and the spectral peak at the
wavenumber k1 = (π , 2π) can de regarded as a consequence of the
development of a secondary instability of the 2D wave-induced
disturbances, caused by nonlinear wave interaction. Additional
peaks at wave numbers k3 and k4 in the spectrum E(kx, ky) may
result from nonlinear generation of second harmonics.

In order to investigate the effect of increasing the bulk Reynolds
number, Re, on the wave-induced pre-turbulent motions, we
performed DNS for fixed values of Ri = 0.2 and c/U0 = 0.05
and different sets of other governing parameters: Re = 40 000,
ka = 0.2, and Re = 80 000, ka = 0.15. The numerically simulated
instantaneous fields of the vorticity modulus in the horizontal
(x,y)-plane at z = 0.12 for Re = 40 000 (a) and Re = 80 000 (b)
are shown in Figure 5 and the corresponding 2D spectra are
shown in Figure 6. As illustrated, the flows with the larger bulk
Reynolds numbers: 15 000, 40 000 and 80 000 exhibit the more
complicated spatial structures. At Re = 80 000, new peaks are
formed and some peaks merge, which is indicative of widening
the spectrum, hence the complication of the pre-turbulence and
its development towards real turbulence.
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Figure 3. Vertical profiles of (a, d) the mean velocity and temperature and the gradient Richardson number, (b, e) the velocity and temperature fluctuations, and (c,
f) the momentum and heat fluxes in DNS of the wave-induced pre-turbulent flow over waved surface with ka = 0.2 and (a,c) (ac/U0 = 0.05 and (d,f) c/U0 = 0.2, for
Re = 15 000 and Ri = 0.08.

Figure 4. Instantaneous power spectrum of the vorticity field in pre-turbulent
air flow over the waved water surface for c/U0 = 0.05, Re = 15 000, Ri = 0.08 and
ka = 0.2 (the case shown in Figure 2 on the x,y plane at z = 0.12).

3. The resonant mechanism of secondary instability

In this section, we develop a theoretical model explaining the
mechanism of the generation of wave-induced disturbances in
super-critically stratified air-flow above the waved water surface
revealed in our DNS. The basic physical mechanism is identified as
follows. The wave on the water surface induces a 2D disturbance in
the air-flow which has the same wave number and phase velocity
as the surface water wave. This 2D disturbance is subjected to a
secondary instability that, in turn, leads to the generation of the

3D structure of the flow revealed in DNS in the vorticity field
shown in Figure 2.

To evaluate the velocity and temperature fluctuations in the 2D
disturbance directly forced by the surface wave, we use 2D Navier-
Stokes equations, written under the Boussinesq approximation,
in curvilinear coordinates:

x = ξ − a exp(−kη) sin kξ , (9)

z = η + a exp(−kη) cos kξ , (10)

in terms of vorticity χ , stream function ψ and temperature �

(Troitskaya et al. (2013a, 2013b). We consider a 2D base flow
with the velocity and temperature profiles coinciding with the
steady-state mean velocity and temperature profiles in DNS, U(η)
and �(η). The 2D fluid-motion equations are recast in terms of
the vorticity and stream function with base profiles, χ0(η) and
ψ0(η), defined by:

χ0(η) = dU

dη
, ψ0(η) =

∫ η

0
(U(η

′ − c)dη
′
. (11)

Further we consider the vorticity, streamfunction and
temperature as sums of the base profiles and 2D disturbances
forced by the surface wave:

χ(η, ξ) = χ0(η) + 	{χ1(η) exp(ikξ)},
ψ(η, ξ) = ψ0(η) + 	{ψ1(η) exp(ikξ)},
�(η, ξ) = �(η) + 	{�1(η) exp(ikξ)}, (12)

where 	{ . . . } denotes the real part of the expressions in
curly brackets. The equations for disturbances are obtained by
substitution of Eq. (12) into the 2D Navier-Stokes equations
and linearization with respect to χ1, ψ1, and �1. The resulting
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(a)

(b)

Figure 5. Instantaneous field of the absolute value of vorticity in the horizontal plane (x,y) at z = 0.12 obtained in DNS for (a) Re = 40 000, Ri = 0.2, ka = 0.2 and (b)
Re = 80 000, Ri = 0.15, ka = 0.15, both at the phase velocity c/U0 = 0.05 and at time t = 600.

equations can be written in the curvilinear coordinates (ξ , η) in
the form (Troitskaya et al. (2013a, 2013b)):

ik

(
dψ0

dη
χ1 − dχ0

dη
ψ1

)
− ikg

�0

(
�1 − a

d�

dη
e−kη

)

= ν

(
d2χ1

dη2
− k2χ1

)
, (13)

d2ψ1

dη2
− k2ψ1 = χ1 − 2ake−kηχ0, (14)

ik

(
dψ0

dη
�1 − d�

dη
ψ1

)
= ν

Pr

(
d2�1

dη2
− k2�1

)
. (15)

Equations (13–15) are supplemented by the boundary
conditions at the water surface in the form:

ψ1|η=0 = 0,
dψ1

dη

∣∣∣∣
η=0

= 2cka, �1|η=0 = 0. (16)

Conditions in Eq. (16) are the impermeability condition of
the water surface with respect to the air, the ‘no-slip’ at the
water surface, and vanishing temperature deviation at the water

surface, respectively. It is also assumed that all disturbances vanish
sufficiently far from the water surface:

ψ1|η→∞ = 0,
dψ1

dη

∣∣∣∣
η→∞

= 0, �1|η→∞ = 0. (17)

Figure 7 shows vertical profiles of the r.m.s. fluctuations of
the horizontal and vertical velocity and temperature, calculated
from Eqs (13)–(15), where the mean velocity and density profiles
are taken from DNS for Re = 15 000, Ri = 0.08, ka = 0.2, and
c = 0.05. These theoretically calculated r.m.s. fluctuation profiles
are compared with profiles of the same fluctuation taken directly
from our DNS of the wave-induced, phase-averaged velocity and
temperature fields:

U
′
w = U0([〈U1〉2] − [〈U1〉]2)1/2,

W
′
w = U0([〈U3〉2] − [〈U3〉]2)1/2,

�
′
w = ��([〈T̃〉2] − [〈T̃〉]2)1/2. (18)

The figure shows a good agreement between the model and
DNS. The observed differences can be attributed to development
of inhomogeneous motions in the y-direction, along the surface
wave crest. It is conceivable that the low-mode, almost regular

c© 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2015)
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(a) (b)

Figure 6. Instantaneous power spectra of the vorticity fields shown in Figure 5. The increments between the lines are (a) 0.05 and (b) 0.02.
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Figure 7. Wave-induced velocity and temperature disturbances in DNS (solid
lines) and theoretical model (dashed lines).

flow pattern in Figure 2 is caused by interaction of the basic wave,
with the wave number k = (2π , 0), with oblique waves, with wave
numbers k1 = (π , ±2π), via a parametric resonance mechanism
(cf. Figure 4).

Craik (1971) has already considered a comparable mechanism
to explain the secondary instabilities in the boundary layer over
a flat plate. Our case is essentially different. First, the main
disturbance is the forced wave-induced disturbance, and its
amplitude is maintained constant, whereas in Craik (1971) it was
an unstable eigenmode. Second, the oblique waves, developing
due to secondary instabilities, are the decaying eigenmodes,
whereas in Craik (1971) these were growing waves.

Similarly to Craik (1971), we search for solution to the original
3D Navier-Stokes equations in the form of a superposition of
three wave disturbances:

φ = φ0(z) + 	{A0ψ0(z) exp[i(ωt − kx)]}
+ 	{ψ1(z) exp(iω1t)(A+(t) exp[−i(k1xx + k1yy)]

+ A−(t) exp[−i(k1xx − k1yy)])}, (19)

where ϕ0(z) stands for the vorticity, temperature or stream
function of the undisturbed flow. The term in the first curly

brackets in Eq. (19) is the wave-induced disturbance of the
air-flow with the amplitude A0, frequency ω and wavenumber
k of the surface wave. (ω = kc, where c is the phase velocity
of the surface wave, k = 2π , and c = 0.05.) The terms in the
second curly brackets account for the oblique wave disturbances
with the frequency ω1, amplitudes A±, and wavenumber vectors
k1= (k1x, k1y) = (π , ±2π) (observed in the spectrum in Figure 4).
Suppose that the frequency ω1 and the wave numbers of the waves
in the second term in Eq. (19), satisfy the conditions of parametric
resonance:

ω1 = 1

2
(ω + �), k1x = 1

2
k (20)

with a certain complex detuning � between the frequency of
the surface wave, ω, and the complex frequency of the oblique
wave, ω1. Here the real part of the detuning, 	{�}, describes the
deviation of the frequencies ω1 and ω from the exact resonance
condition and the imaginary part Im{�} is the oblique wave
damping rate. Note that the imaginary part of the frequency
ω1, I{ω1}=Im{�}, should be negative to keep the flow in the
steady state. Similarly to Craik (1971), the original 3D equations
are derived from the equations for complex amplitudes of the
disturbances, A0 and A± using the perturbation method. The
equations for A+ and A- read

dA+
dt

= σA0A∗
− exp(−i2t�), (21)

dA−
dt

= σA0A∗
+ exp(−i2t�) (22)

whereas, in the considered case, A0 does not depend on time. The
change of variables A± = B± exp(−it�) and simple algebra yields
the equation for B-

d2B−
dt2

− 2Im{�}dB−
dt

+ B−(|�|2 − |σA0|2) = 0. (23)

Here, σ is a complex coefficient which, in principle, can be
evaluated for the considered base flow characteristics. Provided
that |σA0| > |�|, Eq. (23) has the exponentially growing solution:

B− ∼ exp(λt), whereλ = Im{�} +
√

|σA0|2 − (	{�})2.
(24)

c© 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2015)



Stably Stratified Flow over Water: Wave-Induced Motions

0 0.4 0.8 1.2 1.6

–0.04

–0.02

0

0.02

0.04

0.06

(a) (b)
Re (c)/U
Im (c)/U
c/U  cos

–0.1 0 0.1

0

0.2

0.4

0.6

0.8

1

Re (u )/U
Im (u )/U

1

1

(rad)

z/

u1/U0

0

0

0

0

0

Figure 8. (a) Real and imaginary parts of the phase velocity of oblique wave
as functions of the angle, θ , between the wave vector and the x-axis, and
(b) vertical profiles of the real and imaginary parts of the horizontal velocity
of the eigenfunction at k1 = (π , 2π), for Re = 15 000, Ri = 0.08, ka = 0.2, and
c/U0 = 0.05.

Evaluation of coefficient σ is beyond the scope of the present
study. Let us consider only the dispersion characteristics of the
oblique waves in the air-flow, and investigate whether these waves
can be in resonance with the forced, wave-induced disturbance.

To obtain the dispersion relation for oblique harmonic waves,
one needs to find a solution to the eigenvalue problem of the
linearized 3D Navier-Stokes equations. The problem of oblique
waves propagating in the plane-parallel flow can be reduced to
the 2D problem by a rotation mapping (e.g. Drazin and Reid,
2004). Then the perturbations of the stream function, vorticity
and temperature satisfy the following equations:

iK

(
dψ0

dη
χ1 − d3ψ0

dη3
ψ1 − g

�0
�1

)
= ν

(
d2χ1

dη2
− K2χ1

)
,

d2ψ1

dη2
− K2ψ1 = −χ1,

iK

(
dψ0

dη
�1 − d�

dη
ψ1

)
= ν

Pr

(
d2�1

dη2
− K2�1

)
, (25)

where d�0/dz = U(z)cos θ − C, θ = arctan(k1y/k1x) is the angle
between the x-axis and the wavenumber vector of the oblique
wave, K = (k2

1x + k2
1y)1/2 is the absolute value of the wavenumber

of the oblique wave; and C is the phase velocity of the oblique wave.
The resonance conditions (20) require the following relationships
between the parameters of the wave-induced disturbance and the
oblique wave:

k = 2K cos θ , C = c cos θ + �

2K
. (26)

The system (25) was solved numerically for the mean velocity
and temperature profiles, U(η) and �(η), obtained in DNS
for Re = 15 000, Ri = 0.08, ka = 0.2, and c/U0 = 0.05. Taking
the zero boundary conditions for disturbances of vertical and
horizontal velocity and temperature at z = 0 and z/λ= 1, we
determined the eigenfunctions and eigen-frequencies for the
oblique wave satisfying the condition of resonance with the wave-
induced disturbance, K = π /cos θ . Figure 8(a) shows the real and
imaginary parts of the phase velocity C of this wave versus θ . The
real part of the detuning of the phase velocity from the phase
velocity of the wave-induced disturbance is significantly smaller
than the imaginary part. This means that the condition for the
growth of the oblique wave has the form |σA0| > |Im{�}|, i.e. the
growth rate of the parametric instability must exceed the linear
damping rate of the eigenmode. This explains the threshold in
the dependence of the magnitude of fluctuations of velocity and
temperature on the wave slope in Figure 1(a).

Figure 8(b) shows vertical profiles of real and imaginary parts of
the eigenfunction of horizontal disturbance velocity, u1, localized
near the surface, which agrees well with DNS which reveals
disturbances also localized in the vicinity of the waved surface.

The linear theory does not explain the line spectrum of the
excited oblique waves, since the function C(θ) shown in Figure 8
does not have sharp peaks. Then the occurence of the unstable
mode with k1y = 2π in DNS (Figure 4) can be related to the details
of dependence of the coefficient σ on the air-flow parameters;
this is not considered in the present article.

Note also that the proposed model considers the 2D
disturbances of the vorticity, streamfunction and temperature
forced by the surface wave (cf. Eq. (12)). Since the model is
based on the linearized Navier-Stokes equations averaged in the
spanwise (y) direction, it cannot reproduce either the effect of
subharmonics generation or the development of the spanwise
instability of the flow. Thus, it cannot reproduce the features
of the vorticity field distribution in Figure 2. Nevertheless, it
correctly predicts the profiles of the velocity and temperature rms
fluctuations observed in DNS in Figure 5. That means that the
contribution of the forced 2D disturbance is dominant in the
considered case.

4. Conclusions

We performed direct numerical simulation of stably stratified
air-flows over a waved water surface with particular attention
to supercritically stable stratifications. At sufficiently small wave
slopes, the supercritically stratified flows become laminar, similar
to the analogous strongly stratified flows over a flat solid surface.
However, if the wave slope exceeds some threshold value, the
velocity and temperature fluctuations are maintained even in
supercritically stratified flows in the vicinity of the critical level,
where the wave phase velocity coincides with the mean flow
velocity. We propose for this phenomenon the name ‘wave-
induced pre-turbulence’.

We propose also a theoretical model explaining the
development of pre-turbulent motions as a result of generation
of 2D disturbances in the air-flow over the surface wave.
The theoretically predicted amplitudes of the wave-induced
2D disturbances in the air-flow are in good qualitative and
quantitative agreement with DNS. These disturbances are subject
to the development of a secondary instability along the wave-
front direction. Our theoretical model explains the development
of this instability as a result of a parametric resonance between the
2D disturbance induced in the air-flow by the surface wave and
oblique waves. This mechanism is similar to the one suggested
by Craik (1971) for the explanation of turbulent transition in the
boundary-layer flow. Our DNS results show also that increasing
the bulk Reynolds number leads to the development of a wider
spectrum of the disturbance flow and a possible further transition
to a developed turbulent regime.

The regime of pre-turbulent, wave-induced motions, discussed
in the present article, is expected to be observed in laboratory
conditions for wind speeds of the order U0 = O(1 m s−1) above
water surface waves with wavelength λ= O(1 m) and warm air
versus cold water temperature difference about �� = O(10 K).
A similar situation also occurs in the field when warm air is
advected from a heated land surface over a cold sea, e.g. Melas
(1989) reports observations of �� about 10 K at 1.3 m in Oresund
region in June. Under these conditions, the bulk Reynolds and
Richardson numbers, defined in Eqs (2) and (3), are found to be
quite close to these numbers in our DNS.

We have demonstrated that the wave-induced pre-turbulent
motions exhibit the higher energy and, the larger the bulk
Reynolds number, the wider is the spectrum of wave-induced
motions. In view of this conclusion, it is only natural to
expect a transition from wave-induced pre-turbulence to the
real turbulence at sufficiently large Reynolds numbers, for given
supercritical Richardson numbers. Similar physical mechanisms
of the maintenance of very high Re, supercritically stratified
turbulence are revealed in the Energy and Flux-Budget (EFB)
turbulence closure theory (Zilitinkevich et al., 2013).
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