
Regular and chaotic dynamics of a fountain in a stratified fluid
O. A. Druzhinin and Yu. I. Troitskaya 
 
Citation: Chaos 22, 023116 (2012); doi: 10.1063/1.4704814 
View online: http://dx.doi.org/10.1063/1.4704814 
View Table of Contents: http://chaos.aip.org/resource/1/CHAOEH/v22/i2 
Published by the American Institute of Physics. 
 
Related Articles
Bifurcation phenomena in an impulsive model of non-basal testosterone regulation 
Chaos 22, 013121 (2012) 
Resonance phenomena and long-term chaotic advection in volume-preserving systems 
Chaos 22, 013103 (2012) 
Is the Smagorinsky coefficient sensitive to uncertainty in the form of the energy spectrum? 
Phys. Fluids 23, 125109 (2011) 
Neutrally buoyant particle dynamics in fluid flows: Comparison of experiments with Lagrangian stochastic models 
Phys. Fluids 23, 093304 (2011) 
Complete chaotic mixing in an electro-osmotic flow by destabilization of key periodic pathlines 
Phys. Fluids 23, 072002 (2011) 
 
Additional information on Chaos
Journal Homepage: http://chaos.aip.org/ 
Journal Information: http://chaos.aip.org/about/about_the_journal 
Top downloads: http://chaos.aip.org/features/most_downloaded 
Information for Authors: http://chaos.aip.org/authors 

http://chaos.aip.org/?ver=pdfcov
http://aipadvances.aip.org?ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=O. A. Druzhinin&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Yu. I. Troitskaya&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4704814?ver=pdfcov
http://chaos.aip.org/resource/1/CHAOEH/v22/i2?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3685519?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3672510?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3663305?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3632100?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3596127?ver=pdfcov
http://chaos.aip.org/?ver=pdfcov
http://chaos.aip.org/about/about_the_journal?ver=pdfcov
http://chaos.aip.org/features/most_downloaded?ver=pdfcov
http://chaos.aip.org/authors?ver=pdfcov


Regular and chaotic dynamics of a fountain in a stratified fluid

O. A. Druzhinin and Yu. I. Troitskaya
Institute of Applied Physics RAS, N. Novgorod 603950, Russia

(Received 15 March 2011; accepted 3 April 2012; published online 20 April 2012)

In the present paper, we study by direct numerical simulation (DNS) and theoretical analysis, the

dynamics of a fountain penetrating a pycnocline (a sharp density interface) in a density-stratified

fluid. A circular, laminar jet flow of neutral buoyancy is considered, which propagates vertically

upwards towards the pycnocline level, penetrates a distance into the layer of lighter fluid, and

further stagnates and flows down under gravity around the up-flowing core thus creating a fountain.

The DNS results show that if the Froude number (Fr) is small enough, the fountain top remains

axisymmetric and steady. However, if Fr is increased, the fountain top becomes unsteady and

oscillates in a circular flapping (CF) mode, whereby it retains its shape and moves periodically

around the jet central axis. If Fr is increased further, the fountain top rises and collapses chaotically

in a bobbing oscillation mode (or B-mode). The development of these two modes is accompanied

by the generation of different patterns of internal waves (IW) in the pycnocline. The CF-mode

generates spiral internal waves, whereas the B-mode generates IW packets with a complex spatial

distribution. The dependence of the amplitude of the fountain-top oscillations on Fr is well

described by a Landau-type two-mode-competition model. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4704814]

Complex behavior of many physical systems with many

degrees of freedom sometimes can be described by mod-

eling its dynamics with the use of a normal modes

approach. In this approach, the dynamics of a few insta-

bility modes, and their interaction and competition, is

considered retaining only lowest (usually second) order

nonlinear terms in the governing equations. Here, we

perform DNS and use the normal-modes modeling to

study the dynamics of a fountain created by a vertical jet

penetrating a density interface in a two-layer density

stratified fluid. We find that the dynamics of the fountain

can be described by a simple nonlinear model where just

two instability modes are taken into account.

I. INTRODUCTION

A fountain is formed when a jet of heavier fluid is

injected upwards into a lighter fluid (or air) environment.

Rising of the heavy-fluid jet is opposed by the buoyancy

(gravity) force, so that the jet axial vertical velocity

decreases with height and at a certain point turns to zero.

The heavier fluid further moves downward around the up-

flowing fountain core. The dynamics of fountains is of

interest due to many applications in hydrodynamics and geo-

physics and has been studied in laboratory experiments and

numerical simulations.1–4 Recently, a phenomenon of self-

sustained oscillations of fountain-like flows has become of

special interest.3 These results show that at sufficiently large

Froude and Reynolds numbers [Fr ¼ U=ðg0DÞ1=2
and

Re ¼ UD=� where U and D are the fountain axial velocity

and diameter at injection, g0 ¼ gDq=q the buoyancy jump

defined by the gravity acceleration g, density jump Dq and

background density q, and � the fluid kinematic viscosity]

the steady, axisymmetric fountain flow becomes unstable

and the fountain-top oscillations develop. First, a circular

flapping mode develops where the fountain is no longer

axisymmetric and its top circles around the jet central axis.

As the Fr and Re numbers are increased further, a bobbing

mode becomes dominant where the fountain chaotically rises

and collapses.3 A similar effect occurs if a submerged verti-

cal jet flow reaches a water surface. The results of the labora-

tory experiment5 show that a fountain, created at the water

surface by a plane, submerged vertical jet flow, becomes

unsteady at sufficiently high Froude numbers, so that the

fountain top oscillates in the vicinity of the jet vertical axis

and generates surface waves.

In a fluid with a stable density stratification a fountain-

like flow can be created by a jet propagating vertically from

the lower layers of heavier fluid upwards into the upper

layers. In practice, such fountains can be created, e.g., by

buoyant plumes of waste water outfalls in the ocean in the

presence of a seasonal thermocline.6,7 Satellite observations7

and laboratory experiments8 show that such vertically rising

jets are capable of effectively generating internal gravity

waves (IW) in the pycnocline. A theoretical model of this

phenomenon was developed in Ref. 8, where self-sustained

oscillations of the flow in the region where the rising jet flow

is trapped by the pycnocline are considered as a source

of IW.

The objective of the present study is to perform direct

numerical simulation and theoretical analysis of the dynam-

ics of a fountain created in a stably stratified fluid by a verti-

cal, round jet flow penetrating a pycnocline. Governing

equations and numerical method are described in Sec. II.

Numerical results are discussed in Sec. III. A two-mode-

competition model is presented and its predictions are

compared with the direct numerical simulation (DNS) results

in Sec. IV, and final conclusions are made in Sec. V.
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II. BASIC EQUATIONS AND NUMERICAL METHOD

In DNS, a vertically propagating jet flow is created by

injecting a flux of fluid with neutral buoyancy and circular,

Gaussian velocity profile at a lower boundary of the compu-

tational domain (Fig. 1). A stable stratification of the fluid

density is considered where a pycnocline is located at some

distance above the lower horizontal boundary plane. The jet

propagates upwards, deflects the pycnocline and penetrates a

distance into the upper layer of lighter fluid. At a certain

height, the jet fluid stagnates under the action of the gravity

force and flows down around the up-flowing core. Finally,

the jet fluid spreads in the horizontal plane at the neutral

buoyancy level.

The Navier-Stokes equations for the fluid velocity are

written under the Boussinesq approximation in the dimen-

sionless form

@tUi þ Uj@jUi ¼ �@iPþ
1

Re
@2Ui �

diz

Fr2
q; (2.1)

@jUj ¼ 0: (2.2)

The equation for the fluid density is written as

@tqþ Uj@jqþ Uz

dqref

dz
¼ 1

Re Pr
@2q (2.3)

In Eqs. (2.1)–(2.3), Ui (i ¼ x; y; z) is the fluid velocity, q the

instantaneous deviation of the fluid density from the refer-

ence profile qref ðzÞ, and dij the Kronecker’s symbol. The

density reference profile is considered in the form

qref ðzÞ ¼ 1þ 0:5½1� tanh 2ðz� z0Þ�; (2.4)

where z0 defines the pycnocline location. In Eq. (2.3), the

density q is normalized by the density jump across the pyc-

nocline, and the viscous diffusion effect on qref ðzÞ is

neglected.

Reynolds and Froude numbers are defined as

Re ¼ U0D0

�
; (2.5)

and

Fr ¼ U0

N0D0

; (2.6)

where � is the kinematic viscosity, U0 and D0 the velocity

maximum and jet diameter at injection, and N0 the buoyancy

frequency in the middle of the pycnocline (at z ¼ z0). As fol-

lows from Eqs. (2.1)–(2.4), the corresponding dimensionless

buoyancy frequency equals Nm ¼ 1=Fr.

Equations (2.2)–(2.4) are discretized in a cubic domain

with sizes �15 � x � 15, �15 � y � 15, and 0 � z � 30 by

employing a finite difference method of the second-order

accuracy on a uniform rectangular staggered grid consisting

of 2003 nodes. The integration is advanced in time using the

Adams-Bashforth method with time step Dt ¼ 0.015. The

Poisson equation for the pressure is solved by cosine

transform [using fast Fourier transform (FFT)] over x and y
coordinates, and Gauss elimination method over z coordinate.

The Neumann (zero normal gradient) boundary condi-

tion is prescribed for all fields in the horizontal (x) and span-

wise (y) directions in the vertical side planes at x ¼ 615 and

y ¼ 615, and at the upper horizontal plane in the vertical (z)

direction, at z ¼ 30. At the lower horizontal boundary plane,

at z ¼ 0, an injection condition for the velocity is prescribed

in the form

Uiðx; y; z ¼ 0; tÞ ¼ diz exp½�4ðx2 þ y2Þ�; (2.7)

where i ¼ x, y, z. Here, the Neumann boundary condition for

the pressure and density is also applied. Boundary conditions

at injection used in the present paper are similar to the

boundary conditions usually employed in DNS of spatially

developing mixing layers (cf. Ref. 9 and references therein).

The pycnoline level z0 in Eq. (2.4) is prescribed so that

the jet interaction with the pycnocline is not affected by the

boundaries of the computational domain and to be large

enough (z0 ¼ 20 in dimensionless units) to allow the well-

known self-similar structure of the jet flow propagating in a

uniform environment to be established, and to minimize the

effects of the fountain oscillations on the jet injection.

III. NUMERICAL RESULTS

DNS was performed for Froude numbers in the range

0< Fr< 9 with fixed Reynolds number Re ¼ 400 and the

boundary conditions discussed above. The Prandtl number was

set equal to unity. At the initial time t ¼ 0, the velocity and

density fields, Uiðx; y; zÞ and qðx; y; zÞ, were set equal to zero

throughout the computational domain. Then, the injection con-

dition (2.7) for the velocity was switched on “adiabatically,”

i.e., proportionally to the factor (1� expð�tÞ).
In order to check how the inflow boundary condition

(2.7) complies with the demand of the mass conservation, we

evaluated an instantaneous total fluid flux via the boundariesFIG. 1. Schematic of the flow.
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of the computational domain (FS ¼
Þ

UjnjdS, where nj is the

inner unit normal vector), and the volume integral of the

divergence of the velocity field (Idiv ¼
Ð
@jUjdV). The results

(not presented here) show that after a transient (for t < 40)

the total velocity flux via boundaries as well as the volume in-

tegral of the velocity divergence becomes negligible. Thus,

for later times, an initial transient a balance of the inflow via

the lower horizontal boundary and the outflow via the vertical

side boundaries is established.

All the transients died off and a statistically stationary

distribution of the velocity and density fields was reached by

the dimensionless time t � 120. From that time moment, the

sampling of the velocity and density fields was performed to

obtain time-averaged velocity and density fields and their re-

spective rms fluctuations as well as frequency spectra of their

oscillations. The sampling was performed during the time

interval including 5 to 6 periods of internal waves generated

in the pycnocline.

DNS results show that the flow remains axisymmetric

and steady for sufficiently small Froude numbers. At some

critical, Froude number (Fr> 2.5), the flow becomes unsta-

ble. Depending on the Froude number, two different instabil-

ity modes can be distinguished which are similar to the

fountain oscillation modes observed in a homogeneous fluid:

a circular flapping (CF) mode (for 3<Fr< 5) and a bobbing

(B) mode (Fr> 6). If the circular flapping mode dominates,

the top of the fountain retains its shape and moves in a hori-

zontal plane around the jet vertical axis generating spiral in-

ternal waves in the pycnocline. If the bobbing mode

becomes dominant (for larger Fr), the fountain top chaoti-

cally rises and collapses generating IW packets with rela-

tively complex spatial distribution.

Figures 2–4 present the flow regimes observed in DNS

for different Froude numbers: the steady fountain flow (Fr ¼
2.5, Fig. 2); the circular flapping mode (Fr ¼ 4, Figs. 3(a)

and 3(b)); and the bobbing mode (Fr ¼ 7, Figs. 4(a) and

4(b)). The figures show the instantaneous distributions of the

vorticity y-component (xy ¼ @zUx � @xUz) in the central

vertical plane (x, z) and the density q in the horizontal plane

(x, y) at the pycnocline level z ¼ z0 ¼ 20.

FIG. 2. Instantanous distribution of the vorticity y-component xy in the central vertical plane (x, z) (top) and the density q in the horizontal plane (x, y) at the

pycnocline level z ¼ 20 (bottom) at obtained in DNS during the time interval 6 � t � 270 for Fr ¼ 2.5. The interval between the first two frames is Dt ¼ 24

and the interval between the subsequent frames is Dt ¼ 30.
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Figure 2 shows that after a transient which occurs at

times t< 120, an axisymmetric steady fountain flow is estab-

lished. During the transient, the jet attains the pycnocline

and distorts it. This interaction of the jet with the pycnocline

is accompanied by the radiation of transient internal waves,

which propagate radially toward the side boundaries and are

subsequently damped due to the viscous diffusion effect. At

later times, the flow remains steady and no internal waves

are radiated by the fountain.

Figures 3 and 4 show the fountain top oscillations and

IW generation which occur after the transient (at times

t> 240) for Froude numbers Fr ¼ 4 and Fr ¼ 7, respectively.

Figure 3 shows that in the case Fr ¼ 4 the fountain oscilla-

tions occur in the CF-mode and are accompanied by the gen-

eration of internal waves having a spiral shape. In the case Fr

¼ 7 (B-mode, Fig. 4), the fountain top rises and collapses

chaotically and generates IW packets with complex spatial

distribution propagating in the pycnocline from the center to

the periphery of the computational domain.

Figs. 5(a) and 5(b) show the distributions of the hori-

zontal and vertical components of the mean velocity, hUzi
and hUxi, mean density field hqi, and rms fluctuation

density field q0 ¼ < ðq� hqiÞ2>1=2 obtained in DNS for

Fr ¼ 4 (CF-mode) (a) and Fr ¼ 7 (B-mode) (b). The figure

shows that in both cases jet flow penetrates through the

pycnocline a distance into the upper layer and stagnates at

some height Zm. Then, the jet fluid flows down around the

up-flowing core and finally spreads in the horizontal plane

FIG. 3. (a) Instantaneous distribution of the vorticity y-component xy in the central vertical plane (x, z) obtained in DNS at different time moments for Fr ¼ 4.

The interval between the frames is Dt ¼ 12 (b) instantaneous distribution of the density q in the horizontal plane (x, y) at the pycnocline level z ¼ 20 at

obtained in DNS at different time moments for Fr ¼ 4.
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in the vicinity of the pycnocline level at z0¼ 20 creating a

radial outflow. Therefore, in the region z0 < z < Zm, a foun-

tain is created.

Figure 5 shows that, as expected, the fountain height

increases for larger Fr. The density fluctuation amplitude also

increases with Fr. Moreover, in the case Fr¼ 4 (of CF–mode),

the distribution of q0 is characterized by maxima which occur

at the flanks at some distance from the fountain central axis

(at x � 61:5), whereas for Fr ¼ 7 (B-mode) q0 has a maxi-

mum at the fountain center (x ¼ 0). Figure 5(c) compares in

detail the structure of the q0 field in the vicinity of the fountain

center for the two cases of Fr ¼ 4 (i) and Fr ¼ 7 (iii). This

reflects a qualitative difference of the fountain dynamics

distinguishing the two modes. The figure also shows the

distribution of the q0 field obtained from DNS with higher

(3003-grid) resolution (to be discussed below).

At sufficiently large distance from the pycnocline level

(in the region 0 < z < z0) the jet propagates in a uniform

fluid environment. Since the amplitude of the fluctuations

remains negligible in the considered region, the jet spatial

development along the z-axis is governed by the viscous dif-

fusion. Sufficiently far from injection (in the region z >> 1),

the jet flow development can be described by a self-similar

solution in the form10,11

Uðx; y; zÞ ¼ UmðzÞexp �4
x2 þ y2

D2ðzÞ

� �
; (3.1)

where the jet centerline velocity and diameter, Um and D, are

related as

UmD ¼ const (3.2)

FIG. 3. (Continued).
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and asymptotically proportional to

Um � z�1; D � z for z >> 1: (3.3)

From Eqs. (3.1)–(3.3), and (2.5), (2.6) follows that the jet

Reynolds number remains constant, and the Froude number

asymptotically decreases with height as

Fr � z�2 for z >> 1: (3.4)

Figure 6 presents the profiles of the mean velocity

hUziðx; 0; zÞ obtained in DNS for Fr ¼ 4 and Fr ¼ 7 at differ-

ent heights and normalized by the centerline mean velocity

hUzið0; 0; zÞ and the jet diameter defined from the mean

velocity field (in Figs. 5(a) and 5(b)) as

DðzÞ ¼ 2ffiffiffi
p
p
Ð Lx

�Lx
hUziðx; 0; zÞdx

hUzið0; 0; zÞ
: (3.5)

The figure shows that the profiles are well described by

the self-similar solution (3.1). The figure also shows that

the jet Reynolds number remains nearly constant in the

region 4 < z < 15 in agreement with Eq. (3.2). The figure

also shows that the development of the jet centerline ve-

locity hUzið0; 0; zÞ and Froude number is well predicted by

fits

Um ¼
1

0:05zþ 1
; FrðzÞ ¼ Frð0Þ

ð0:05zþ 1Þ2
; (3.6)

FIG. 4. (a) The same as in Fig. 3(a) but for Fr ¼ 7. The interval between the frames is Dt ¼ 24 and (b) the same as in Fig. 3(b) but for Fr ¼ 7.
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which reproduce asymptotics (3.3), (3.4) for large z. At

larger heights, the presence of the pycnocline significantly

affects the jet vertical development, and the self-similarity of

the jet is broken.

The difference between the CF-mode and the B-mode is

also evident in the dynamics of the isopycnal surface

ðZq¼1:5ðx; yÞ � z0Þ, where the density is equal to the density

in the middle of the unperturbed pycnocline, i.e., q ¼
qref ðz0Þ ¼ 1:5 (in dimensionless units), presented in Fig. 7.

The figure shows that in the case of CF-mode (with Fr ¼ 4)

the fountain top circles around the central vertical axis at (x
¼ 0, y ¼ 0) retaining its shape, whereas in the case of B-

mode (with Fr ¼ 7), the fountain top rises and collapses with

no obvious periodicity.

Figure 8 presents spatially averaged frequency spectra

of the oscillations of the isopycnal surface Zq¼1:5 and density

q obtained in DNS for Fr ¼ 4 (CF-mode) and Fr ¼ 7 (B-

mode). Spectra of Zq¼1:5 were averaged over 10 realizations

obtained at points equispaced in the range �2 < x < 2 at y
¼ 0. The density (or IW) spectra were averaged over realiza-

tions obtained at 4 points located at ðx ¼ 610; y ¼ 0Þ and

ðx ¼ 0; y ¼ 610Þ at the pycnocline level z ¼ z0. The figure

shows that the spectra in the CF-mode case (for Fr ¼ 4) are

characterized by the well-defined maximum-amplitude peak

with frequency x=N � 0:5 and its harmonics. On the other

hand, in the B-mode case (Fr ¼ 7), the spectra are continuous

indicating that a chaotic regime sets in. In both cases, the

location of the maximum-amplitude peak of IW spectra coin-

cides with the location of that peak in the Zq¼1:5 spectra (at

x=N � 0:5 for Fr ¼ 4 and x=N � 0:4 for Fr ¼ 7). The figure

also shows the spectra obtained from DNS with higher

(3003-grid) resolution (to be discussed below).

FIG. 4. (Continued).
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In order to find out how the flow characteristics depend

on the Froude number DNS was performed 2:5 � Fr � 9

with the same initial and boundary conditions. Figure 9

shows Fr-dependence of the fountain height, the dispersion

and frequency of the fountain-top oscillations, and the ampli-

tude of internal waves.

Fountain height Zm was evaluated as a maximum dis-

placement of the isopycnal surface Zq¼1:5ðx; y ¼ 0Þ with

FIG. 5. (a) Distribution of the vertical and horizontal components of the mean velocity, hUzi and hUxi, the mean density hqi and its rms fluctuation q0 in the

central vertical plane (x, z) obtained in DNS for Froude number Fr ¼ 4(b) the same as in Fig. 5(a) but for Fr ¼ 7(c) the details of the distribution of the density

rms fluctuation q0 in the central vertical plane (x, z) in the vicinity of the fountain center obtained in DNS for Froude number Fr ¼ 4 (i) (CF-mode) and Fr ¼ 7

(iii) (B-mode). Graphs in the right column (ii), (iv) are obtained from DNS with 3003-grid resolution. The contour levels are 0, 0.04, 0.08, …, 0.44.
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respect to the initial pycnocline level z0 and averaged over

time. The dependence ZmðFrÞ obtained in DNS is presented

in Figure 9(a). Note that the height of a turbulent fountain is

defined by the momentum and buoyancy fluxes in the dimen-

sionless form as1

Zt
m � ðU2D2ÞaðUD2gDq=qÞbD�1; (3.7)

with indexes a ¼ 3=4 and b ¼ �1=2. As follows from

Eq. (3.7),

Zt
m � Fr: (3.8)

On the other hand, the height of a laminar fountain is defined

by the initial velocity and buoyancy jump across the pycno-

cline as

Zl
m � U2=ðDgDq=qÞ � Fr2: (3.9)

Figure 9(a) compares the dependence ZmðFrÞ obtained in

DNS with scaling Zm � Fr3=2 which can be regarded as an

intermediate case of an unsteady fountain between the two

limiting cases of fully turbulent and laminar fountains.2 The

figure shows that behavior of ZmðFrÞ is in general agreement

with this scaling.

Dispersion of the fountain-top oscillations DZ was eval-

uated as an average dispersion of the oscillations of the iso-

pycnal surface Zq¼1:5ðx; y ¼ 0Þ obtained at 10 points

equispaced in the range �2 < x < 2. Similarly, the IW

amplitude qIW was defined as an average dispersion of the

density oscillations in 4 points located at ðx ¼ 610; y ¼ 0Þ
and ðx ¼ 0; y ¼ 610Þ at the pycnocline level z ¼ z0. Figures

9(b) and 9(d) show that both DZ and qIW increase with

increasing Froude number for Fr< 5, under the regime of

CF-mode oscillations. In the transient range 5< Fr< 6, DZ

and qIW decrease, and further grow for Fr> 6 with increasing

Froude number. The behavior of dispersion DZ is well

described by a stationary solution of the Landau’s equation,

which describes the growth of the amplitude of a disturbance

under the regime of a small super-criticality10

DZ ¼
2c
a
ðFr � FrcÞ

� �1=2

; (3.10)

with parameters 2c
a ¼ 0:4 and Frc ¼ 3:6 for Fr< 5, and 2c

a ¼
0:45 and Frc ¼ 4:8 for Fr> 6 (dashed lines in Fig. 9(b)). The

fit for the numerical data in Fig. 9 for DZ is sought in the

form C1ðFr � C2Þ1=2
where coefficients C1;2 are varied to

obtain better agreement separately for 3.5<Fr< 5.5 and

6<Fr< 9. The results in the figure indicate that the steady,

axisymmetric fountain flow becomes unstable through the

Andronov-Hopf bifurcation leading to the development of

the fountain-top self-sustained oscillations. In the range

3<Fr< 5, the circular flapping mode is dominant, and the

bobbing mode is dominant for Fr> 6. In Sec. IV, we discuss

in more detail a two-modes-competition model and compare

the model predictions with our DNS results.

Figure 9(c) shows that the frequency of the fountain-top

oscillations (evaluated as a frequency of the maximum-

amplitude peak in the spectrum of the oscillations of the iso-

pycnal surface Zq¼1:5, cf. Fig. 8) which also coincides with

the IW frequency, decreases monotonically as Fr increases.

Note that the scaling for XZðFrÞ can be derived under an

assumption that the dimensionless frequency XZ is defined

by the relative buoyancy jump across the pycnocline,

FIG. 5. (Continued).
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gDq=q, and the flow length and velocity scales, D and U, so

that

XZ � DgDq=qU2 � Fr�2: (3.11)

This scaling is also observed experimentally for the

fountain-top oscillations in the case of a heavy-fluid fountain

in a surrounding homogeneous lighter fluid.3 (In this case,

Dq is the density difference between the fountain-fluid den-

sity and the surrounding fluid density.) Figure 9(c) shows

that dependence XZðFrÞ obtained in DNS is in general agree-

ment with scaling (3.11) for Fr> 5.

In the above discussion, we characterize the dependence

of the flow properties on Fr in terms of the Froude number at

injection, i.e., Fr ¼ Fr(0). However, both Eq. (3.6) and Fig. 6

show that the Froude number decreases with height. There-

fore, for practical purposes, it would be useful to characterize

the Fr-dependence in terms of the Froude number in the

vicinity of the pycnocline level, at z � z0. On the other hand,

Fig. 6 shows that the dependence of the Froude number vs.

z-coordinate is the same for all Fr(0) and well described

by Eq. (3.6). Therefore, the characterization of the Fr-

dependence of the flow dynamics in terms of Fr(z0) is

reduced to the re-definition of the Froude number as Fr(z0) �
0:25 Fr(0). For convenience, we provide in Fig. 9 additional

horizontal axes in terms of Fr(z0).

Figures 3–5 show that as IW propagates from the foun-

tain center toward the side boundaries, their amplitude

decreases (both due to the radial front expansion and the vis-

cous diffusion effect). Thus, IW amplitude at the boundary

decreases substantially as compared to the IW amplitude in

the vicinity of the fountain center (from q0 � 0:1 at x � 5 to

q0 � 0:03 at x � 15, cf. Figs. 5(a) and 5(b)). However, the

waves reflected from the boundaries, although of a small am-

plitude, are still visible in Figs. 3(b) and 4(b). The reflected

waves are also manifested in the distribution of the rms den-

sity fluctuations in Figs. 5(a) and 5(b) where local maxima

of q0 are present near boundaries x ¼ 615.

In order to find out how the fountain dynamics is

affected by the internal waves reflected from the side

boundaries we performed DNS for two Froude number cases,

Fr ¼ 4 and Fr ¼ 7, in a larger domain with sizes

�30 � x � 30,�30 � y � 30, and 0 � z � 30 using the grid

of 400� 400� 200 nodes. Other DSN parameters and

boundary conditions were the same as in the case of the

cubic 303-domain. The DNS results show that the distribu-

tions of the mean velocity and density in both cases are

almost identical to these distributions obtained in the 303-

domain, and the spectra of the fountain-top oscillations and

the IW spectra are also almost identical to the spectra form

DNS with the 303-domain. Therefore, the effect of the

reflected waves on the fountain dynamics and the IW radia-

tion by the fountain can be regarded as negligible.

In addition, we also performed a grid-dependence

study to find out whether the observed fountain dynamics

and the IW generation are properly resolved. In this study,

we used the grid of 300� 300� 300 nodes in the same

303- domain and time step Dt ¼ 0.01 and performed DNS

for three characteristic cases of Fr ¼ 2.5 (axisymmetric,

steady fountain), Fr ¼ 4 (CF-mode) and Fr ¼ 7 (B-mode).

The results show that the same scenario in the development

of the fountain oscillations occurs as observed in DNS with

2003-grid (cf. Figs. 2–4). The spectra of the fountain-top

oscillations and IW and the distribution of the rms density

fluctuation in the central (x,z)-plane obtained in DNS with

2003-grid and 3003-grid are practically identical in all

cases. Figure 5(c) shows that the structure of the CF and B

modes of the fountain-top oscillations obtained from DNS

with 3003-grid (ii) and (iv) are not changed. As in DNS

with 2003-grid, for Fr ¼ 4 (CF–mode), the distribution

the maxima of q0 occur at the flanks at some distance from

the fountain central axis (at x � 61:5), whereas for Fr ¼ 7

(B-mode) q0 has a maximum at the fountain center (x ¼ 0).

Thus, the qualitative difference of the fountain dynamics

distinguishing the two modes is not changed. Figure 8

also shows that the location of the maximum-amplitude

peaks in the spectra is not changed, and the difference

between the peaks amplitudes is less than 4% in the case

Fr ¼ 4 and less than 1% in the case Fr ¼ 7. Thus, we

conclude that increasing the space and time resolution by

50% does not appreciably alter, both qualitatively and

quantitatively, the observed fountain-top dynamics and IW

generation, although considerably increases the required

CPU-time and memory as compared to the DNS with 2003-

grid.

FIG. 6. Mean velocity profile hUziðx; y ¼ 0Þ at different heights (a) and z-

development of the jet centerline velocity Um and the flow Reynolds and

Froude numbers normalized by the respective initial values, Re (z ¼ 0) and

Fr (z ¼ 0), for Fr ¼ 4 and Fr ¼ 7 (b) self-similar solution (3.1), (3.6) is

shown in short-dashed line.
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IV. TWO-MODES-COMPETITION MODEL OF THE
FOUNTAIN-TOP DYNAMICS

Let us employ the approach proposed by Landau for

modeling the growth of a weak disturbance in a hydrody-

namic system under the regime of a small super-criticality,10

and a phenomenological model of the development of self-

sustained oscillations in a multi-frequency system.12

Consider a flow field consisting of a superposition of

three parts, namely, the steady, axisymmetrical solution

U0ðx; y; zÞ and small-amplitude disturbances corresponding

to two different modes

Uiðx; y; z; tÞ ¼ A0U0iðx; y; zÞ þ RefA1ðtÞU1iðx; y; zÞ
þ A2ðtÞU2iðx; y; zÞg; (4.1)

where i ¼ x, y, z, Refg is the real part of the expression in

the brackets, and the complex amplitudes of the first and sec-

ond modes are written in the form

A1;2ðtÞ � A1;2ðb1;2tÞexpð�ix1;2tÞ: (4.2)

In Eq. (4.2), x1;2 are the real eigenfrequencies of the modes,

and b1;2 are the growth rates.

The system of equations for the modes amplitudes can

be obtained by substitution of Eq. (4.1) into the original

Navier-Stokes equations and linearization over small distur-

bances and time-averaging over oscillations with frequencies

x1;2.10 Consider the case of a small super-criticality where

b1;2 are linearly dependent on the governing parameter (the

Froude number)

b1;2 ¼ c1;2ðFr � Fr1;2Þ; (4.3)

FIG. 7. Isopycnal surface (Zq¼1:5ðx; yÞ � z0) at time moments: t ¼ 342, 354, 366, 378, 390 for Fr ¼ 4, and t ¼ 420, 432,…, 728 for Fr ¼ 7.

FIG. 8. Spatially averaged spectra of the oscillations of the isopycnal sur-

face Zq¼1:5 in the region of the fountain-top and the density q at the pycno-

cline level z ¼ z0 at the distance of 10 dimensionless length units away from

the fountain central axis for Fr ¼ 4 (a), (c) (CF-mode) and Fr ¼ 7 (b), (d)

(B-mode). The buoyancy frequency N ¼ 1=Fr. The spectra in dashed line

are from DNS with higher (3003-grid) resolution.
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where c1;2 are positive constants and Fr1;2 the threshold val-

ues of the Froude number of the generation of the first and

second modes, respectively. In accordance with the DNS

results discussed in Sec. III, consider Fr1 < Fr2. In the case

of a small super-criticality, the equations governing the

temporal dynamics of the amplitudes can be written in the

following normal form:10,12

djA1j2

dt
¼ 2c1ðFr � Fr1ÞjA1j2 � a1jA1j4 � r1jA1j2jA2j2;

(4.4.1)

djA2j2

dt
¼ 2c2ðFr � Fr2ÞjA2j2 � a2jA2j4 � r2jA1j2jA2j2:

(4.4.2)

Second and third terms in the r.h.s. of Eq. (4.4) describe

nonlinear interaction between the modes, and coefficients

a1;2 and r1;2 are assumed to be positive constants.10,12

Consider the Froude number exceeding the threshold of

the generation of the first mode, Fr > Fr1. Then, it is con-

venient to introduce unknown positive functions m1;2 related

to the modes amplitudes as

jA1j2 ¼
2c1

a1

ðFr � Fr1Þm1; (4.5.1)

jA2j2 ¼
2c1

a2

ðFr � Fr1Þm2; (4.5.2)

and a “slow” time variable,

s ¼ 2c1ðFr � Fr1Þt: (4.5.3)

Substitution of Eqs. (4.5.1)–(4.5.3) into Eq. (4.4) gives the

following equations for m1;2:

dm1

ds
¼ m1 � m2

1 � R1m1m2; (4.6.1)

dm2

ds
¼ lm2 � m2

2 � R2m1m2; (4.6.2)

where R1;2 ¼ r1;2=a2;1 and

l ¼ c2ðFr � Fr2Þ
c1ðFr � Fr1Þ

(4.7)

is the new governing parameter of the problem. From

Eq. (4.7) follows that for Fr > Fr1 parameter l increases

monotonically with increasing Fr, so that �1 < l � c2=c1

for Fr1 � Fr <1.

It can be shown by a straightforward calculation that

Eq. (4.6) possess four steady solutions:

ðm1;m2Þ ¼ ð0; 0Þ; (4.8.1)

ðm1;m2Þ ¼ ð1; 0Þ; (4.8.2)

ðm1;m2Þ ¼
1� lR1

1� R1R2

;
l� R2

1� R1R2

� �
; (4.8.3)

ðm1;m2Þ ¼ ð0; lÞ: (4.8.4)

Solution (4.8.1) describes the steady axisymmetric flow and

is unstable for Fr > Fr1. Solutions (4.8.2) and (4.8.4)

describe the generation of the first and second modes, respec-

tively, and solution (4.8.3) describes a regime where the two

modes coexist.

Linear stability analysis of solutions (4.8.1)–(4.8.4)

shows that in the case R1R2 < 1, or “weak” modes interac-

tion, the following scenario develops as the Froude number

increases. First, for l < R2 only solution (4.8.2) is stable,

so that the first (circular-flapping) mode is generated. As

the Froude number increases, for R2 < l < 1=R1, solution

(4.8.3) becomes stable and other solutions are unstable.

Here, the two modes coexist, and the amplitude of the first

(CF) mode decreases, whereas the amplitude of the second

(bobbing) mode increases with Fr. As Fr is increased fur-

ther, for l > 1=R1, the only stable solution is Eq. (4.8.4)

and describes the generation of the B-mode. The depend-

ence of the modes amplitudes jA1;2j on Fr and the above

scenario of the development of the interaction and competi-

tion between the modes are presented in Fig. 10(a) where

Fr	1 ¼ Frðl ¼ R2Þ, Fr	2 ¼ Frðl ¼ 1=R1Þ are the stability

threshold values of the Froude number implicitly defined

by Eq. (4.7).

In another case R1R2 > 1, of “strong” interaction

between the modes, the following scenario develops as the

Froude number increases. For l < 1=R1, the only stable

solution is Eq. (4.8.2), so that CF-mode is generated. In the

region 1=R1 < l < R2 solutions (4.8.2) and (4.8.4) are both

stable, so that either CF- or B-mode dominates the flow dy-

namics depending on initial conditions. The two-mode solu-

tion (4.8.3) in this case in unstable for all Fr. Fig. 10(b)

FIG. 9. Dependence of the fountain height Zm (a), dispersion DZ (b), and the

maximum-peak frequency XZ of the fountain-top oscillations (c), and IW

amplitude qIW (d) on Fr. Additional horizontal axes in terms of the Froude

number at the pycnocline level, Fr(z0), are also provided.
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shows dependence of the modes amplitudes on Fr in the con-

sidered case of “strong” mode interaction.

Figure 9(b) shows that the dependence of the dispersion

of the fountain-top oscillations DZ ¼ ðjA1j2 þ jA2j2Þ1=2
on

the Froude number experiences a jump at Fr � 6, where the

regime of oscillations changes. Employing dependence

DZðFrÞ obtained in DNS the unknown coefficients in Eqs.

(4.4)–(4.6) can be evaluated via a best-fit procedure as
2c1

a1
� 0:41,

2c2

a2
� 0:45, R1 � 2, R2 � 0:47, and the threshold

values of the Froude number Fr1 � 3:6 and Fr2 � 4:8. Fig-

ure 11 shows that the theoretical approximation obtained

within the weakly nonlinear asymptotical model fits well the

DNS results. Therefore, the non-monotonous dependence

DZðFrÞ obtained in DNS can be regarded as the result of the

competition between the CF- and B-modes.

It is important to point out that the model considered

above does not take into account possible synchronization

effects between the two modes which may affect their inter-

action. These synchronization effects are possible since the

frequency of the fountain-top oscillations changes continu-

ously in the range 5<Fr< 6 dividing the regimes dominated

by the circular flapping and bobbing modes. However, the

agreement between the model prediction and DNS results in

Fig. 11 indicates that the synchronization effects play a

minor role in the considered case.

It should be also pointed out that in the general case, the

model coefficients (c1;2, a1;2, and r1;2) are also functions of

the Reynolds number, i.e., dependent on the viscous diffu-

sion effects. However, the experimental results and the

regime map obtained in Ref. 3 show that for Re> 300 the

behavior of the fountain is governed by the Froude number.

Thus, Re ¼ 400 considered in the present paper is large

enough to neglect the viscous diffusion effects as far as the

oscillations of the fountain top and generation of internal

waves are concerned.

V. CONCLUSIONS

The dynamics of a fountain created by a vertical jet flow

penetrating a pycnocline in a stably-stratified fluid has been

studied by direct numerical simulation and theoretical analy-

sis. The results show that if the flow Froude number Fr

(defined by the initial velocity, diameter of the jet flow and

the buoyancy frequency in the pycnocline) exceeds a thresh-

old value (Fr> 3), the steady axisymmetric fountain flow

becomes unstable and the fountain-top performs self-

sustained oscillations accompanied by the generation of in-

ternal waves in the pycnocline. The results also show that

there can be distinguished two different modes of the

fountain-top oscillations. If the Froude number is small

enough (3<Fr< 5), the fountain-top moves periodically

around the fountain central axis retaining its shape in a circu-

lar flapping mode and generates spiral internal waves (IW)

in the pycnocline. If the Froude number is further increased,

the fountain top collapses and rises chaotically in a bobbing

oscillations mode and generates IW packets with a complex

spatial distribution. The dependence of the amplitude of the

fountain-top oscillations on Fr is well described by the

Landau-type two-modes-competition model under the

regime of small super-criticality.
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