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Abstract—Large eddy simulation is applied to model a fountain in a density-stratified fluid. The foun-
tain is formed, as a vertical turbulent jet penetrates through a pycnocline. The jet flow is initiated by
the formulation of a boundary condition in the form of an upward neutral-buoyancy fluid flow with the
Gaussian axisymmetric mean-velocity profile and a given fluctuation level. It is shown that at a Froude
number Fr higher than a certain critical value the fountain executes self-oscillations accompanied by in-
ternal wave generation within the pycnocline. The predominant self-oscillation mode is axisymmetric,
when the fountain top periodically breaks down generating internal wave packets traveling toward the
periphery of the computation domain. The characteristic frequency of the internal waves coincides with
that of the fountain top oscillations and monotonically decreases with increase in Fr. The Fr-dependence
of the fountain top oscillation amplitude obtained in the numerical solution is in good agreement with
the predictions of the theoretical Landau model for the instability mode in the soft self-excitation regime.
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A heavy-fluid jet having an initial upward-directed momentum and propagating in a lighter fluid is called
a fountain. The jet is decelerated under the action of the buoyancy force (gravity) and reaches a maximum
height (turn point), whereupon the fluid flows downward from the turn point, thus forming a counter stream,
and spreads radially on its buoyancy level. The fountain dynamics attracts an interest thanks to many
applications in hydrodynamics and geophysics [1].

A flow similar with a fountain can be formed in a fluid with a nearly two-layer stratification, when the
light fluid is introduced in the lower fluid layer at a certain distance from the density jump (pycnocline).
In this case, even in the absence of an initial momentum, the fluid accelerates under the action of the buoy-
ance force and acquires a positive vertical momentum. In the case of a turbulent fountain, the entrainment
of the surrounding fluid leads to a situation, when the floating-up fluid approaching the pycnocline has a
density similar in value with that of the fluid in the lower layer. Thus, a fluid jet of neutral buoyancy (with
respect to the lower-layer fluid) with a nonzero vertical momentum is formed. If its velocity is fairly high,
then the heavy fluid jet penetrates in the region above the pycnocline, thus forming a fountain. Such foun-
tains can arise, for example, when waste water jets float up in the ocean near underwater collectors in the
presence of a seasonal pycnocline [2–4].

Another important example of these fountains is furnished by jets consisting of gas bubbles which em-
anate from fractures at the ocean bottom. A similar phenomenon might also be expected in the proximity of
underwater sources of fresh water.

The fountain dynamics were studied both in physical laboratory experiments and in numerical simula-
tions [5–7]. The results of these studies have shown that the jet dynamics are determined by the Froude Fr
and Reynolds Re numbers based on the axial velocity and jet diameter, the buoyancy jump, and the kine-
matic viscosity of the fluid. At low Fr and Re the fountain represents a steady flow which loses stability with
increase in these parameters. Depending on Fr and Re, different unstable modes of fountain oscillations can
be self-excited.
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The fountain oscillations are capable of radiating internal waves if the oscillation frequency is lower than
the buoyancy frequency. In turn, the manifestation of these internal waves on the water surface might be
expected, which makes possible the distant diagnostics of underwater buoyant jets. The experimental indi-
cations of the possibility of surface manifestation of the internal waves excited by underwater collectors of
waste water are presented in [3]. The internal waves generated by the interaction between a buoyant jet and
a pycnocline were detected in the laboratory experiment [8], in which the condition of the scale modeling
with respect to the Froude number was fulfilled for a typical coastal disposal system. The results obtained
show that internal waves can be generated in the pycnocline under the action of buoyant jets. The results of
laboratory experiments and a theoretical analysis [9] have shown that a buoyant jet interacting with a pyc-
nocline executes quasiperiodic oscillations in the vertical plane which effectively generate internal waves.
It was established that the internal wave source is the axisymmetric global mode of the jet oscillations.
We note that an analogous situation can arise in the case of submerged fountain outflow onto the free sur-
face. For example, the laboratory experiments [10, 11] showed that surface waves can be generated by a
plane submerged fountain.

Direct numerical simulation of a fountain formed in the case of laminar, heavy-fluid jet penetration
through a pycnocline showed that at the Froude number higher than a certain critical value the flow becomes
unstable and the fountain executes self-oscillations accompanied by internal wave generation in the pycno-
cline [12]. In the frequency spectrum of the internal waves the main peak coincides with the fountain top
oscillation frequency which monotonically diminishes with increase in Fr. The Fr-dependence of the foun-
tain top oscillation amplitude obtained in the numerical simulation is in good agreement with the predictions
of the theoretical model of the competition between interacting modes in the soft self-excitation regime.

It should be noted that in the above-listed studies the Reynolds number considered was relatively low
(Re < 104 in the laboratory experiments and Re< 103 in the numerical experiments). However, in practice
(for example, in geophysical applications) the Reynolds number is usually fairly high (Re > 105) and the
flows are turbulent.

The purpose of this study is to numerically model the dynamics of a fountain generated when a vertical
turbulent jet penetrates through a pycnocline at Reynolds numbers similar in value to the actual (Re∼ 105)
using large eddy simulation.

1. BASIC EQUATIONS AND DESCRIPTION
OF THE NUMERICAL METHOD

We will consider a fluid with stable density stratification, with a density jump (pycnocline) located on a
certain horizon Z = Z0. The density profile is given in the form:

R0(Z) = ρ0

(
1 + 0.5

Δρ
ρ0

[
1 − tanh

2(Z − Z0)

D0

])
.

A jet with the mean density profile

u(x, y, t) = U0 exp
(−4(x2 + y2)

)
(1.1)

flows vertically upward through the lower boundary Z = 0.

Under the action of buoyancy forces the jet is decelerated in the vicinity of the pycnocline, curves it,
and penetrates into the upper layer of the lighter fluid at a certain finite height (up to the turn point). Then,
similarly to the flow in a conventional fountain, the fluid in the jet flows downward from the turn point, thus
forming a counter stream, and then spreads radially in a plane on the neutral buoyancy horizon.

The dimensionless variables are determined as follows:
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(x, y, z) =
(X , Y, Z)

D0
, Ui =

ui

U0
, ρ =

R − R0(z)
Δρ

,

where ui are the components of the velocity vector (i = x, y, z) and R is the fluid density.
The fluid dynamics equations were integrated using large eddy simulation. In this method the instanta-

neous velocity and density fields are represented as the sums of large-scale (or filtered) fields and subgrid
fluctuations. The fluctuation effect on the large-scale field dynamics (that is, the Reynolds stresses) is taken
into account using different closure hypotheses (see [13] for an overview of the LES methods).

For the large-scale fields the LES-filtered Navier–Stokes equations in the Boussinesq approximation and
the fluid incompressibility condition in the dimensionless variables take the form:

∂Ui

∂ t
+ Uj

∂Ui

∂x j
=− ∂P

∂xi
+

1
Re

∂ 2Ui

∂x2
j

− ∂τi j

∂x j
− δi j

Fr2 ρ , (1.2)

∂Uj

∂x j
= 0,

where δi j is the Kronecker symbol. The equation for the fluid density field can be written in the form:

∂ρ
∂ t

+ Uj
∂ρ
∂x j

+ Uz
dρref

dz
=

1
RePr

∂ 2ρ
∂x2

j

− ∂τρ j

∂x j
, (1.3)

where the fluxes (Reynolds stresses) τi j and τρ j are modeled using the closure procedure discussed below.
In Eq. (1.3) the original profile of the dimensionless density is as follows:

ρref(z) = 1 + 0.5
[
1 − tanh 2(z − z0)

]
, (1.4)

where z0 = Z0/D0 is the pycnocline horizon. In Eq. (1.3) the variation in ρref(z) due to molecular diffusion
is neglected. In Eq. (1.2) the Reynolds (Re) and Froude (Fr) numbers are determined as follows:

Re =
U0D0

ν
, Fr =

U0

N0D0
, (1.5)

N0 =

(
− g

ρ0

dR0

dZ

)1/2

=

(
g
ρ0

Δρ
D0

)1/2

,

where ν is the kinematic viscosity of the fluid and N0 is the dimensional buoyancy frequency at the center
of the pycnocline. From Eqs. (1.2)–(1.4) it follows that at the center of the pycnocline the dimensionless
buoyancy frequency Nm = 1/Fr.

In this study we use the LES closure model based on the equation for the kinetic energy of the subgrid
turbulence, k = 1/2τi j [14, 15]. The equation for k is written in the form:

∂k
∂ t

+ Uj
∂k
∂x j

=
∂

∂xi

(
νi

∂k
∂x j

)
+ νt

(
∂Ui

∂x j
+

∂Uj

∂xi

)
∂Ui

∂x j
− c1

k3/2

l
+

νt

Fr2

(
dρref

dz
+

∂ρ
∂ z

)
, (1.6)

where turbulent viscosity is specified in the form:

νt = c2lk1/2. (1.7)

In Eq. (1.7) c1 = 0.1 and c2 = 0.93 are constant coefficients, while the scale length l is taken to be equal
to the spatial step of the grid. The fluxes τi j and τ jρ are expressed in the form:

τi j − 1
3

τkk =−νt

(
∂Ui

∂x j
+

∂Uj

∂xi

)
, (1.8)

τρ j =− νt

Prt

∂ρ
∂x j

. (1.9)
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In this study Pr and Prt are taken to be equal to unity.
Equations (1.2), (1.3), and (1.6) are solved in a rectangular domain with the following dimensions:

−30≤ x≤ 30, −30≤ y≤ 30, and 0≤ z≤ 30. On the lateral vertical boundaries of the computation domain
x =±30 in the (y, z) plane and on the upper horizontal boundary z = 30 in the (x, y) plane the von Neumann
conditions (zero displacement) are imposed for all the variables. On the lower boundary z = 0 in the (x, y)
plane the condition for the velocity corresponds to the upward directed jet with neutral buoyancy (relative
to the surrounding fluid) with the Gaussian profile (1.1), on which the fluctuations of the form

Ub
i (x, y, t) = exp(−4(x2 + y2))(δiz + Uf i(x, y, t)) (1.10)

are superimposed.
The fluctuation field Uf i is represented in the form of the sum of independent Fourier harmonics with

random phases and a homogeneous broad spatial-temporal spectrum and an amplitude of 30% of the mean
axial velocity. The fluctuation amplitude is taken to be fairly large in order to accelerate in a maximum
degree jet flow transition to the developed turbulence regime. This is due to the limited dimensions of
the computation domain in the vertical direction. The von Neumann boundary condition is preassigned
for the density. The jet Reynolds number is taken to be 8× 104 and at a distance of about ten original
diameters from the lower boundary the jet flow becomes turbulent. The value z0 in Eq. (1.4) determining the
pycnocline horizon is taken to be fairly large (15 in the dimensionless length units), such that the effect of the
transitional processes connected with the attainment of turbulent flow in the jet produced by the boundary
condition (1.10) can be neglected.

Equations (1.2), (1.3), and (1.6) are discretized using a second-order finite-difference method on a uni-
form staggered grid consisting of 400× 400× 200 gridpoints in the x, y, and z coordinates, respectively.
The integration is performed using the Adams–Bashforth second-order method [12] with the time step
Δt = 0.015. The splitting method [16] is used and the Poisson equation for the pressure is solved using
the cosine transformation in the x and y coordinates (fast Fourier transformation) and the Gauss method in
the z coordinate.

As can be seen from the numerical results presented below, the fountain generates internal waves prop-
agating in the pycnocline toward the computation domain boundaries (vertical planes (y, z) at x =±30 and
(x, z) at y =±30). To avoid the internal wave reflection from the vertical boundaries the terms [−F(x, y)Uz]
and [−F(x, y)ρ ] are added to the right sides of Eqs. (1.2) and (1.3), where the function F(x, y) = 1 in a nar-
row layer (one dimensionless length unit in thickness) near the vertical boundaries and vanishes in the rest
of the computation domain. Thus, the internal wave decay on the boundaries is achieved and the reflected
wave effect can be neglected [17].

2. RESULTS OF THE NUMERICAL MODELING

Numerical simulation was carried out for the Froude number values in the jet entry section (z = 0) on
the range 0 < Fr(0) < 20 and at Re = 8× 104 at the same boundary conditions discussed above. At the
initial moment of time the velocity and density fields U(x, y, z) and ρ(x, y, z) were taken to be zero. Then
the boundary condition for the velocity (1.10) was “turned on” adiabatically (in proportion to the factor
1 − exp(−t), where t is time). After transitional processes have been terminated, the statistically steady
distribution of the velocity and density fields was attained to the moment t ≈ 800. Starting from this moment
the time-average fields and r.m.s. fluctuations were calculated and the data for calculating the temporal
spectra of the fluctuations were stored. The calculations were made on the time interval 800 < t < 1800
including not less than 5 or 6 periods of the internal waves generated within the pycnocline.

At fairly small z (z < z0) the stratification effect is slight and the jet propagates in an almost density-
homogeneous fluid. Since the Reynolds number is fairly high (Re = 8×104), under the action of the initial
fluctuations the jet becomes turbulent fairly rapidly (at a distance of a few diameters in z). In Fig. 1a we
have plotted the profiles of the mean velocity ⟨Uz(x, 0, z)⟩ obtained in the numerical simulation for different
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ω

Fig. 1. Profiles of the mean vertical velocity component ⟨Uz(x, 0)⟩ for Fr(0) = 5 and 15 at different z (a), z-dependences
of the mean axial velocity (I) and the Reynolds (II) and Froude (III) numbers (b), and frequency spectrum of the velocity
fluctuations (c) for different Fr: (a) (1) z = 3, Fr(0) = 5; (2) z = 12, Fr(0) = 5; (3) z = 3, Fr(0) = 15; (4) z = 12, Fr(0) = 15;
and (5) (2.2); (b) (1) Fr(0) = 3; (2) Fr(0) = 15; and (3) (2.3); and (c) (1) Fr(0) = 15 and (3) ω−5/3.

Froude numbers and normalized by the axial velocity ⟨Uz(0, 0, z)⟩ and the jet diameter, which at different
distances in z is calculated as follows:

D(z) =
2√
π

1
⟨Uz(0, 0, z)⟩

Lx∫

Lx

⟨Uz(x, 0, z)⟩dx. (2.1)

The velocity profiles are well described by the self-similar solution [17]

⟨Uz(x, y, z)⟩ = Um(z)exp

(
−4

x2 + y2

D2(z)

)
, (2.2)

where Um(z) = ⟨Uz(0, 0, z)⟩. The dependences of the axial velocity and Re and Fr on z normalized by their
corresponding initial values at z = 0 are presented in Fig. 1b. In a region fairly far from the pycnocline
(z < 12) these dependences are well described by the expressions

Um(z) =
U(0)D(0)

0.23z + 1
, Re(z) = Re(0), Fr(z) =

Fr(0)

(0.23z + 1)2 , (2.3)

which follow from the conservation law for the momentum flux of a turbulent let with the expansion coeffi-
cient 0.23. This coefficient is similar in value to the conventional value 0.22 for the axisymmetric turbulent
submerged jet [18].
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Fig. 2. Distributions of the mean vertical ⟨Uz⟩ (a) and horizontal ⟨Ux⟩ (b) velocity components and r.m.s. density fluctua-
tions ρ ′ (c) in the central (x, z) plane for Fr(0) = 15; the isoline increments are 0.025, 0.01, and 0.04 for (a–c).

In Fig. 1c the frequency spectrum of the jet velocity fluctuations E(ω) is presented; it was obtained
in the numerical simulation with Fr(0) = 15. The spectrum was calculated and averaged from five time
realizations at five points with the coordinates (x = 0, y = 0, z = 12), (x = 0, y = ±0.45, z = 12), and
(x = ±0.45, y = 0, z = 12). Clearly that the spectrum is well described by the Kolmogorov asymptotics
ω−5/3, characteristic of the developed turbulence, on the frequency range 0.2<ω < 2. The calculations for
different Froude numbers show that the spectra are almost independent of Fr.

The results presented in Fig. 1b, together with asymptotics (2.3), show that Fr rapidly diminishes with
increase in z. Thus, as the pycnocline is approached, the local value Fr(z) is considerably smaller than the
initial value Fr(0). For this reason, it was the value Fr = Fr(12) that was taken as the near-pycnocline jet
flow characteristic directly determining the fountain properties. It should also be noted that the self- similar
solution (2.2), (2.3) performs well in the region fairly far from the pycnocline, at z < 12. At Fr(0) > 15 the
fountain oscillation amplitude is fairly high (of the order of unity) and the fountain dynamics change the jet
properties near the pycnocline. Because of this, solution (2.3) was not used for estimating Fr(12). At z = 12
the Froude number was calculated as Fr(12) = Fr(0)⟨Uz(12)⟩/D(12), where ⟨Uz(12)⟩ and D(12) are the
mean axial velocity and the jet diameter determined by Eq. (2.1).

In Fig. 2 the mean fields of the vertical and horizontal velocity components and the r.m.s. density fluc-
tuations obtained in the numerical simulation with Fr(12) = 1.5 show that under the action of stratification
the jet is decelerated in the vicinity of the pycnocline and penetrates into the upper fluid layer up to a certain
height Z∗ corresponding to the turn point. From the turn point the fluid in the jet flows downward, thus
forming a counter stream with respect to the ascending current, and then spreads in a horizontal plane on
the pycnocline level z0. Thus, in the z0 < z< Zm region a fountain is formed.

The results of the calculations show that at Fr(0) < 3 the mean flow in the fountain is steady. With
increase in Fr the steady regime loses the stability and the fountain begins to execute low-frequency self-
oscillations, which, in turn, generate internal waves in the pycnocline. In Fig. 2c the self-oscillations man-
ifest themselves as considerable density fluctuations in the fountain top region. The fountain wanders in
the vicinity of the center of the jet and periodically breaks down generating in the pycnocline internal wave
packages which travel from the center toward the computation domain boundaries (Fig. 3).

In numerical simulation the spatially-average frequency spectra Zi of the isopycnic surface oscillations
Zρ=1.5(x, y) − z0 with the density value corresponding to the center of the undisturbed pycnocline ρref(z0) =
1.5 and the internal wave spectra were calculated (Fig. 4). The Zi spectra were averaged over ten points
located on the −5< x< 5 interval of the horizontal axis at y = 0 with the same spacings. The internal wave
spectra were averaged over nine points located on a circle, 20 dimensionless units in radius, with the center
on the fountain axis on the pycnocline horizon z = z0 = 15. In Fig. 4b the broken line marks a maximum
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ω

ρ

Fig. 3. Distribution of the vorticity component ωy in the central (x, z) plane at the moments t = 1440, 1485, and 1530 (a–c)
and density deviations from its mean value on the pycnocline horizon in the horizontal (x, y) plane at t = 1530, 1620, and
1710 (d–f); Fr(0) = 11.

ω

Fig. 4. Spectra of the isopycnic line ρ = 1.5 oscillations (a) and the density ρ fluctuations (b) for Fr(12) = 1.5.

of the buoyancy frequency. The results for different Fr show that with increase in the Froude number the
frequency of the main peak in the spectra decreases, while the peak amplitude increases. In all the cases the
main peak in the internal wave spectra coincides in frequency with the peak in the spectrum Zi of the density
interface oscillations.

To elucidate how the main flow parameters, such as the fountain height, the variance and the characteristic
period of the fountain top oscillations, and the internal wave amplitude, depend on Fr the calculations were
performed for 3≤ Fr(0)≤ 20 (Fig. 5).

The fountain height Zm was determined as a maximum vertical time-average deviation of the isopycnic
line Zρ=1.5(x, y = 0) relative to the initial pycnocline level. Clearly that at fairly high Fr (Fr(12) > 1) the
fountain height increases with the Froude number as Zm ∼ Fr, which is in agreement with the well-known
asymptotics [1] for the turbulent heavy-fluid fountain in a density-homogeneous light fluid.

The variance of the fountain top oscillations ΔZ was determined from the oscillations of the isopycnic
line Zρ=1.5(x, y = 0) and averaged over ten points. In Fig. 5b the behavior of the variance ΔZ satisfactorily
agrees with the steady solution of the Landau equation [19] describing the perturbation amplitude growth in
the soft self-excitation regime at a small supercriticity of the form:
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Fig. 5. Fr(12)-dependences of the fountain height Zm (a), the variance ΔZ of the isopycnic line Zρ=1.5 displacement in the
vicinity of the fountain top (b), the isopycnic line Zρ=1.5 oscillation period TZ (c), and the internal wave amplitude ρIw (d);
(1) is Zm and (2) is Fr (a) and (1) is TZ and (2) is Fr2 (c).

ΔZ = (α(Fr − Frc))
1/2, (2.4)

where α = 0.4 and Frc = 0.24 (broken curve in Fig. 5b). Thus, the results of numerical simulation in-
dicate that the steady solution loses the stability owing to the Andronov–Hopf bifurcation leading to the
development of an unsteady solution. In this case, the axisymmetric mode of the fountain self-oscillations
corresponding to the breakdown regime is predominant (Fig. 3).

The characteristic time scale (period) of the fountain top oscillations was determined from the spectrum
Zi of the isopycnic surface (Zρ=1.5(x, y) − z0) oscillations in the form:

TZ =

∫
Zi(ω)ω−1 dω

/∫
Zi(ω)dω . (2.5)

As can be seen in Fig. 5c, the fountain top oscillation period monotonically increases with increase in
Fr and is proportional to Fr2 at Fr(12) > 1. These asymptotics are obtained under the assumption that the
fountain top oscillation amplitude is determined by the velocity scale U and the buoyancy jump gΔρ/ρ .
Then for the dimensionless oscillation period we obtain

TZ ∼ ρU2

DgΔρ
∼ Fr2. (2.6)

The same asymptotics for the oscillation period of the top of the fountain formed, when a heavy-fluid jet
propagates in a homogeneous light fluid, was observable in the experiment [6].

The internal wave amplitudes were determined from the average spectra in the form:

ρIw =

∫
ρ(ω)dω . (2.7)

As can be seen in Fig. 5d, the ρIw amplitude increases on the 0.25< Fr< 1 range and varies only slightly
at high Fr. The increase in ρIw is due to an increase in the fountain top oscillation amplitude, while its
saturation is apparently connected with the nonlinear effects including wave breakup.
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The results discussed above qualitatively agree with the data of the laboratory experiment [9]. In that
experiment the upward-directed Re∼ 104 jet flow in a fluid with the temperature stratification in the form of
pycnocline was considered. In the pycnocline region the underwater filming of the flow was made, together
with the synchronous measurement of the internal waves excited. The experimental results showed that the
jet interacting with the pycnocline executed quasiperiodic oscillations in the vertical plane which effectively
generated internal waves at frequencies in the vicinity of 0.7Nmax, where Nmax is the maximum value of the
buoyancy frequency. It was established that the predominant mode is axisymmetric. The numerical results
presented in Figs. 3 and 4 are generally in agreement with these experimental data. A more detailed com-
parison with the experiment is difficult in view of the fact that in the laboratory experiment the pycnocline
thickness was of the order of the jet diameter on the pycnocline horizon. In the numerical experiment the
dimensionless pycnocline thickness was of the order of unity, that is, much smaller than the jet diameter near
the pycnocline horizon D(12) ≈ 5 (Fig. 2). Moreover, in the laboratory experiment the Reynolds number
was almost an order smaller than the value 8× 104 considered in the numerical simulation, which is very
important for the quantitative comparison of the jet oscillation spectra.

Summary. Numerical simulation of the dynamics of a fountain formed, as a turbulent vertical jet pene-
trates through a pycnocline in a stratified fluid, shows that at the Froude numbers Fr higher than a certain
critical value the flow becomes unstable and the fountain executes self-oscillations accompanied by internal
wave generation in the pycnocline. The axisymmetric mode is predominant. The internal wave frequency
coincides with the fountain top oscillation frequency and decreases with increase in the Froude number. The
Fr-dependence of the fountain top oscillation amplitude agrees well with the prediction of the Landau model
for the instability mode in the weak self-excitation regime.

The study was carried out with the support of the Russian Foundation for Basic Research (projects
Nos. 11-05-00455 and 13-05-91175).
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