Nonlinear dynamics and optics division
 
 
 
   

QUILL: 3D QED particle-in-cell code

QUILL (simulator for QUantum effects in Intense Laser-pLasma interactions) is a fully three-dimensional parallel particle-in-cell code developed in the Institute of Applied Physics RAS. To our knowledge, it is the first particle-in-cell code with implementation of Monte Carlo QED approach to investigate electron-positron cascades development.

The code is able to model the following processes using the Monte Carlo technique:
- photon emission by an electron in the strong field, with radiation reaction effects
- electron-positron pair creation from gamma photons (Breit-Wheeler process)
- electron-positron pair birth from vacuum in extremely strong fields
- field ionization

The Maxwell solvers implemented in the code are NDFX (the scheme used in A. Pukhov's VLPL code) and FDTD.
The particles pushers implemented in the code use Vay or Boris scheme. 

Main papers describing the code in more detail:

E.N. Nerush, I.Yu. Kostyukov. Modelling of QED effects in superstrong laser field. Probl. Atom. Sci. Tech. 68 (4), 3-7 (2010).
http://vant.kipt.kharkov.ua/ANNOTAZII_2010/annotazii_2010_4_3.html

E.N. Nerush, I.Yu. Kostyukov, et al. Laser Field Absorption in Self-Generated Electron-Positron Pair Plasma. Phys. Rev. Lett. 106, 035001 (2011).
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.035001

E.N. Nerush, I.Yu. Kostyukov, et al. Gamma-ray generation in ultrahigh-intensity laser-foil interactions. Phys. Plasmas 21, 013109 (2014).
http://aip.scitation.org/doi/abs/10.1063/1.4863423 

Papers that contain results obtained with QUILL:

E.N. Nerush, I.Yu. Kostyukov. Carrier-envelope phase effects in plasma-based electron acceleration with few-cycle laser pulses. Phys. Rev. Lett. 103, 035001 (2009).
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.035001

N.V. Elkina, A.M. Fedotov, I.Yu. Kostyukov, et al. QED cascades induced by circularly polarized laser fields. Phys. Rev. S.T.A.B. 14, 054401 (2011).
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.14.054401

A.A. Soloviev, M.V. Starodubtsev, et al. Two-screen single-shot electron spectrometer for laser wakefield accelerated electron beams. Rev. Sci. Instrum. 82, 043304 (2011).
http://aip.scitation.org/doi/abs/10.1063/1.3585862

V.F. Bashmakov, E.N. Nerush, I.Yu. Kostyukov, et al. Effect of laser polarization on quantum electrodynamical cascading. Phys. Plasmas 21, 013105 (2014).
http://aip.scitation.org/doi/abs/10.1063/1.4861863

D.A. Serebryakov, E.N. Nerush, I.Yu. Kostyukov. Incoherent synchrotron emission of laser-driven plasma edge. Phys. Plasmas 22, 123119 (2015).
http://aip.scitation.org/doi/abs/10.1063/1.4938206

A.A. Golovanov, I.Yu. Kostyukov, et al. Beam loading in the bubble regime in plasmas with hollow channels. Phys. Plasmas 23, 093114 (2016).
http://aip.scitation.org/doi/abs/10.1063/1.4962565

I.I. Artemenko, I.Yu. Kostyukov. Ionization-induced laser-driven QED cascade in noble gases. Phys. Rev. A 96, 032106 (2017).
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.032106

D.A. Serebryakov, E.N. Nerush. Efficient gamma-ray generation by ultra-intense laser pulses obliquely incident on a planar plasma layer. Quantum Electronics 46(4), 299-304 (2016).
http://iopscience.iop.org/article/10.1070/QEL16051/meta

I.Yu. Kostyukov, E.N. Nerush, A.M. Pukhov. Effect of laser polarization on electron acceleration and betatron radiation generation plasma. Voprosy Atomnoj Nauki i Tekhniki 68 (4), 82-84 (2010).
http://vant.kipt.kharkov.ua/ANNOTAZII_2010/annotazii_2010_4_82.html